Réanimation

, Volume 20, Issue 4, pp 279–286

Déficit calorique du patient de réanimation : à traiter ou à contempler ?

  • S. Graf
  • N. Maisonneuve
  • Y. Fleury
  • C. P. Heidegger
Mise au Point / Update
  • 135 Downloads

Résumé

La prise en charge multidisciplinaire d’un patient hospitalisé en réanimation présente de multiples défis. Outre l’instabilité hémodynamique et respiratoire, l’équilibre métabolique est profondément altéré chez ces patients. Le catabolisme et un apport nutritionnel compromis simultané induisent un déficit protéinoénergétique aux conséquences négatives. La quantité de calories à administrer chez ces patients reste toutefois un sujet controversé. L’insuffisance aussi bien que l’excès d’apport calorique pouvant être délétères pour les patients, il est par conséquent primordial de déterminer précocement leurs besoins énergétiques. La calorimétrie indirecte (CI) est la méthode recommandée. En l’absence de celle-ci, des équations prédictives pondérées par des facteurs de correction sont utilisées, mais restent imprécises. En pratique, la Société européenne de nutrition (ESPEN) recommande des formules simplifiées, basées sur le poids corporel anamnestique. Une fois les besoins énergétiques déterminés, il faut choisir la voie d’administration appropriée. La nutrition entérale (NE) doit être le premier choix de soutien si le tube digestif est fonctionnel. Cependant, la voie entérale est souvent associée à un déficit d’apport calorique cumulé, qui aggrave l’état de dénutrition du patient en réanimation et augmente l’incidence des complications secondaires (mortalité, morbidité, durée de ventilation mécanique et du séjour hospitalier). L’ajout d’une nutrition parentérale (NP) en complément est une des alternatives proposées afin de pallier ce déficit calorique. La sensibilisation des équipes soignantes sur les conséquences potentiellement graves de la dénutrition et leur adhérence à des protocoles nutritionnels s’intègre dans un processus de qualité de soins.

Mots clés

Déficit énergétique Dénutrition Nutrition entérale Réanimation Soins intensifs 

The energy deficit of the critically ill patient: to treat or not to treat?

Abstract

The multidisciplinary care of a critically ill patient is a real challenge. In addition to the haemodynamic and respiratory instability, the metabolic balance is seriously altered in such a patient. The catabolism and a simultaneous compromised nutritional intake induce a proteino-energy deficit with negative consequences. The assessment of caloric needs for the critically ill patient is still a matter of debate. The lack of, as well as the excess, of energy supply is associated with a worse patient’s outcome, emphasizing the importance of determining the appropriate energy target as soon as possible. Indirect calorimetry is considered as the gold standard in clinical practice. The energy needs may be otherwise estimated by predictive equations, adjusted with corrective factors, but these are often inaccurate. Experts recommend simple formulae based on the patient’s actual body weight. Once the energy target is determined, the appropriate nutritional delivery route must be chosen. Enteral nutrition is considered to be the first choice in case of a functional digestive tract. However, the enteral route is often associated with a cumulative deficit of energy intake, which may worsen the malnutrition of the critically ill patient and increase the incidence of secondary complications (mortality, morbidity, duration of mechanical ventilation, and length of hospital stay). Supplemental parenteral nutrition is one of the alternatives proposed to prevent this energy deficit. Raising awareness of health care teams on the potentially serious consequences of malnutrition and their adherence to nutritional protocols is an integral part of the process of quality of care.

Keywords

Energy deficit Malnutrition Nutritional support Critical illness Intensive care unit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Ait Hssain A, Souweine B, Cano NJ (2010) Physiopathologie de la dénutrition en réanimation. Réanimation 19:423–430CrossRefGoogle Scholar
  2. 2.
    Correia MI, Waitzberg DL (2003) The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr 22:235–239PubMedCrossRefGoogle Scholar
  3. 3.
    Pichard C, Kyle UG, Morabia A, et al (2004) Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay. Am J Clin Nutr 79:613–618PubMedGoogle Scholar
  4. 4.
    Villet S, Chiolero RL, Bollmann MD, et al (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24:502–509PubMedCrossRefGoogle Scholar
  5. 5.
    Martin CM, Doig GS, Heyland DK, et al (2004) Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ 170:197–204PubMedGoogle Scholar
  6. 6.
    Amaral TF, Matos LC, Tavares MM, et al (2007) The economic impact of disease-related malnutrition at hospital admission. Clin Nutr 26:778–784PubMedCrossRefGoogle Scholar
  7. 7.
    Kochevar M, Guenter P, Holcombe B, et al (2007) ASPEN statement on parenteral nutrition standardization. JPEN J Parenter Enteral Nutr 31:441–448PubMedCrossRefGoogle Scholar
  8. 8.
    Kreymann KG, Berger MM, Deutz NE, et al (2006) ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr 25:210–223PubMedCrossRefGoogle Scholar
  9. 9.
    McClave SA, Martindale RG, Vanek VW, et al (2009) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr 33:277–316PubMedCrossRefGoogle Scholar
  10. 10.
    Singer P, Berger MM, Van den Berghe G, et al (2009) ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr 28:387–400PubMedCrossRefGoogle Scholar
  11. 11.
    Preiser JC, Devos P (2007) Physiopathologie du stress sévère. Traité de nutrition artificielle de l’adulte, 3e éditionGoogle Scholar
  12. 12.
    Obled C, Papet I, Breuille D (2002) Metabolic bases of amino acid requirements in acute diseases. Curr Opin Clin Nutr Metab Care 5:189–197PubMedCrossRefGoogle Scholar
  13. 13.
    Li L, Messina JL (2009) Acute insulin resistance following injury. Trends Endocrinol Metab 20:429–435PubMedCrossRefGoogle Scholar
  14. 14.
    Alberda C, Gramlich L, Jones N, et al (2009) The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med 35:1728–1737PubMedCrossRefGoogle Scholar
  15. 15.
    Artinian V, Krayem H, DiGiovine B (2006) Effects of early enteral feeding on the outcome of critically ill mechanically ventilated medical patients. Chest 129:960–967PubMedCrossRefGoogle Scholar
  16. 16.
    Berger MM, Chiolero RL (2007) Hypocaloric feeding: pros and cons. Curr Opin Crit Care 13:180–186PubMedCrossRefGoogle Scholar
  17. 17.
    Kyle UG, Genton L, Heidegger CP, et al (2006) Hospitalized mechanically ventilated patients are at higher risk of enteral underfeeding than non-ventilated patients. Clin Nutr 25:727–735PubMedCrossRefGoogle Scholar
  18. 18.
    Blackburn GL, Wollner S, Bistrian BR (2010) Nutrition support in the intensive care unit: an evolving science. Arch Surg 145:533–538PubMedCrossRefGoogle Scholar
  19. 19.
    Griffiths RD (2007) Too much of a good thing: the curse of overfeeding. Crit Care 11:176PubMedCrossRefGoogle Scholar
  20. 20.
    Dvir D, Cohen J, Singer P (2006) Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr 25:37–44PubMedCrossRefGoogle Scholar
  21. 21.
    Singer P, Pichard C, Heidegger CP, et al (2010) Considering energy deficit in the intensive care unit. Curr Opin Clin Nutr Metab Care 13:170–176PubMedCrossRefGoogle Scholar
  22. 22.
    Raynard B (2009) Place de la calorimétrie indirecte et des formules estimant la dépense énergétique des malades de réanimation. Nut Clin Metab 23:192–197Google Scholar
  23. 23.
    Faisy C, Taylor SJ (2009) Dépense énergétique en réanimation. Réanimation 18:477–485CrossRefGoogle Scholar
  24. 24.
    Faisy C, Guerot E, Diehl JL, et al (2003) Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr 78:241–249PubMedGoogle Scholar
  25. 25.
    Harris J, Benedict F (1919) A biometric study of the basal metabolism in man. Carnegie Institution of Washington, Washington, DC. Publication no 279Google Scholar
  26. 26.
    Frankenfield DC, Coleman A, Alam S, et al (2009) Analysis of estimation methods for resting metabolic rate in critically ill adults. JPEN J Parenter Enteral Nutr, 33:27–36PubMedCrossRefGoogle Scholar
  27. 27.
    Flancbaum L, Choban PS, Sambucco S, et al (1999) Comparison of indirect calorimetry, the Fick method, and prediction equations in estimating the energy requirements of critically ill patients. Am J Clin Nutr 69:461–466PubMedGoogle Scholar
  28. 28.
    Cheng CH, Chen CH, Wong Y, et al (2002) Measured versus estimated energy expenditure in mechanically ventilated critically ill patients. Clin Nutr 21:165–172PubMedCrossRefGoogle Scholar
  29. 29.
    Pirat A, Tucker AM, Taylor KA, et al (2009) Comparison of measured versus predicted energy requirements in critically ill cancer patients. Respir Care 54:487–494PubMedGoogle Scholar
  30. 30.
    Pichard C, Kreymann G, Weimann A, et al (2008) Energy supply level correlates with ICU mortality: a multicentre study in a cohort of 1,209 patients (abstract). Intensive Care Med S97Google Scholar
  31. 31.
    De Jonghe B, Appere-De-Vechi C, Fournier M, et al (2001) A prospective survey of nutritional support practices in intensive care unit patients: what is prescribed? What is delivered? Crit Care Med 29:8–12PubMedCrossRefGoogle Scholar
  32. 32.
    Woodcock NP, Zeigler D, Palmer MD, et al (2001) Enteral versus parenteral nutrition: a pragmatic study. Nutrition 17:1–12PubMedCrossRefGoogle Scholar
  33. 33.
    Bankhead R, Boullata J, Brantley S, et al (2009) Enteral nutrition practice recommendations. JPEN J Parenter Enteral Nutr 33:122–167PubMedCrossRefGoogle Scholar
  34. 34.
    Ibrahim EH, Mehringer L, Prentice D, et al (2002) Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr 26:174–181PubMedCrossRefGoogle Scholar
  35. 35.
    Gramlich L, Kichian K, Pinilla J, et al (2004) Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition 20:843–848PubMedCrossRefGoogle Scholar
  36. 36.
    Sigalet DL, Mackenzie SL, Hameed SM (2004) Enteral nutrition and mucosal immunity: implications for feeding strategies in surgery and trauma. Can J Surg 47:109–116PubMedGoogle Scholar
  37. 37.
    Jeejeebhoy KN (2001) Total parenteral nutrition: potion or poison? Am J Clin Nutr 74:160–163PubMedGoogle Scholar
  38. 38.
    Marik PE, Pinsky M (2003) Death by parenteral nutrition. Intensive Care Med 29:867–869PubMedGoogle Scholar
  39. 39.
    van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367PubMedCrossRefGoogle Scholar
  40. 40.
    Nardo P, Dupertuis YM, Jetzer J, et al (2008) Clinical relevance of parenteral nutrition prescription and administration in 200 hospitalized patients: a quality control study. Clin Nutr 27:858–864PubMedCrossRefGoogle Scholar
  41. 41.
    Doig GS, Simpson F, Finfer S, et al (2008) Effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA 300:2731–2741PubMedCrossRefGoogle Scholar
  42. 42.
    Heidegger CP, Romand JA, Treggiari MM, et al (2007) Is it now time to promote mixed enteral and parenteral nutrition for the critically ill patient? Intensive Care Med 33:963–969PubMedCrossRefGoogle Scholar
  43. 43.
    Finfer S, Chittock DR, Su SY, et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297PubMedCrossRefGoogle Scholar
  44. 44.
    Mackenzie SL, Zygun DA, Whitmore BL, et al (2005) Implementation of a nutrition support protocol increases the proportion of mechanically ventilated patients reaching enteral nutrition targets in the adult intensive care unit. JPEN J Parenter Enteral Nutr 29:74–80PubMedCrossRefGoogle Scholar
  45. 45.
    Genton L, Dupertuis YM, Romand JA, et al (2004) Higher calorie prescription improves nutrient delivery during the first 5 days of enteral nutrition. Clin Nutr 23:307–315PubMedCrossRefGoogle Scholar
  46. 46.
    Mentec H, Dupont H, Bocchetti M, et al (2001) Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 29:1955–1961PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2011

Authors and Affiliations

  • S. Graf
    • 1
    • 2
  • N. Maisonneuve
    • 2
  • Y. Fleury
    • 1
  • C. P. Heidegger
    • 1
  1. 1.Département d’anesthésiologie, de pharmacologie et de soins intensifs, service des soins intensifsHôpitaux universitaires de GenèveGenève 14Suisse
  2. 2.Service de nutrition cliniqueHôpitaux universitaires de GenèveGenèveSuisse

Personalised recommendations