Advertisement

Experimental and DFT Studies on Thermochromism Induced Binary HBLC Mixture

  • Vasanthi Thangavel
  • Balasubramanian Venkataraman
  • Subhasri Prakasan
  • Jayaprakasam Ramasamy
  • Vijayakumar Vellalapalayam NallagounderEmail author
Condensed Matter
  • 9 Downloads

Abstract

Novel linear double hydrogen-bonded liquid crystals (HBLCs) were derived from diglycolic acid (DGA, a non-mesogenic compound) and 4-n-alkoxybenzoic acids (nOBA, n = 7 and 8 mesogenic compounds). Hydrogen bond (H bond) formation and its vibrational stretching frequencies had been calculated by experimental and theoretical IR spectroscopy. The calculated band gap energy (4.96 eV) using a UV-Vis spectrum clearly reveals the coincidence of highest occupied molecular orbital-lowest unoccupied molecular orbital band energy of the present HBLC mixture. Further, X-ray diffraction (XRD) studies at room temperature confirm the monoclinic nature of the HBLC mixture. Mesophases and their transition temperature were studied by a polarized optical microscope (POM) and differential scanning calorimetry (DSC). The order of the phase transition was evaluated by the thermal analysis. Due to the rotary motion of molecules, nematic phase (threaded texture) with thermochromic effect was observed. The induced thermochromism in the present HBLC and its possible color recording applications were discussed. Molecular descriptors (using computational density functional theory (DFT)) of the present mixture indicate the hardness and softness of the HBLC mixture. Natural bond orbital (NBO) studies revealed the O–H…O stabilization energy in the present HBLC mixture. Also, the lone pair (LP)-to-π* transition confirms the existence of intermolecular hydrogen bonding in the HBLC mixture. The calculated band gap energy of the DGA + nOBA HBLC mixture is a more useful parameter to identify suitable hydrogen-bonded liquid crystal material for photonic applications. Mulliken analysis shows clear evidence of the charge distribution in different molecules of the HBLC system.

Keywords

Thermochromic nematic POM DSC DFT Binding energy 

Notes

Funding Information

One of the authors (V. N. Vijayakumar) received a financial support rendered by the Department of Science and Technology (No. SERB/F/7454/2013-2014, dated 21 February 2014), New Delhi; the Department of Atomic Energy (No. 34/14/14/2016-BRNS/34039, dated 22 April 2016); and the Board of Research in Nuclear Science (DAE-BRNS) (TNSCST/RFRS/VR/19/2018-2019/7666, dated 6 June 2019), and an infrastructural support provided by the Bannari Amman Institute of Technology, Sathyamangalam.

References

  1. 1.
    T. Uchida, Jpn. J. Appl. Phys. 53, 03CA02 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Uchida, M. Wada, Electron. Commun. Jpn. 56-C, 72 (1973)ADSGoogle Scholar
  3. 3.
    Y. Ishii, T. Uchida, M. Wada, IEEE Trans. Electron. Devices 25, 323 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    J.P.F. Lagerwall, G. Scalia, Curr. Appl. Phys. 12, 1387 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    N. Pongali Sathya Prabu, M.L.N. Madhu Mohan, Mol. Cryst. Liq. Cryst. 557, 144 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Pramanik, M.K. Das, B. Das, Liq. Cryst. 42, 412 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Goodby, Ferroelectric liquid crystals. Principles, properties and applications. Ferroelectr. Relat. Phenom. 7 (1991)Google Scholar
  8. 8.
    R.J. Carlton, J.T. Hunter, D.S. Miller, Liq. Cryst. Rev. 1, 29 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Kato, J.M.J. Frechet, Liq. Cryst. 33, 1429 (2006)CrossRefGoogle Scholar
  10. 10.
    M.S. Giricheva, K.E. Fedorov, S.A. Shpilevaya, O. Syrbu, D. Yu, J. Struct. Chem. 58, 9 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Eremin, H. Nadasi, P. Hirankittiwong, Liq. Cryst. 45, 2121 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Palermo, A. Guglielmelli, L. Pezzi, Liq. Cryst. 45, 2214 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Gulbas, D. Coskun, Y. Gursel, Adv. Mater. 5, 333 (2014)Google Scholar
  14. 14.
    J.W. Goodby, Liq. Cryst. 44, 1 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Tschierske, Liq. Cryst. 45, 2221 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Zannoni, Liq. Cryst. 45, 1880 (2018)CrossRefGoogle Scholar
  17. 17.
    C.T. Imrie, P.A. Henderson, G.Y. Yeap, Liq. Cryst. 36, 755 (2009)CrossRefGoogle Scholar
  18. 18.
    W.C. Chen, Z. Li, X.L. Chen, Aerosp. Mater. Technol. 45, 1 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Seyfouri, R. Binions, Sol. Energy Mater. Sol. Cells 159, 52 (2017)CrossRefGoogle Scholar
  20. 20.
    G.Y. Sun, X. Cao, H. Zhou, S. Bao, P. Jin, Sol. Energy Mater. Sol. Cells 159, 553 (2017)CrossRefGoogle Scholar
  21. 21.
    A.M. Donia, E.Z.M. Ebeid, Thermochim. Acta 131, 1 (1988)CrossRefGoogle Scholar
  22. 22.
    T. Inabe, T.T. Mitani, Y. Maruyama, J. Bull. Chem. Soc. Jpn. 62, 2245 (1989)CrossRefGoogle Scholar
  23. 23.
    M. Neebe, D. Rhinow, N. Schromczyk, N.A. Hampp, J. Phys. Chem. B 112, 6946 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Cheng, X. Zhang, C. Fang, J. Chen, Z. Wang, J. Mater. Sci. Technol. 34, 2225 (2018)CrossRefGoogle Scholar
  25. 25.
    P.L. Praveen, D.P. Ojha, Phase Transit. 86, 433 (2013)CrossRefGoogle Scholar
  26. 26.
    A.R. Khokhlov, A.V. Emelyanenko, Beilstein J. Nanotechnol. 9, 2644 (2018)CrossRefGoogle Scholar
  27. 27.
    V.G. Chigrinov, A.K. Srivastava, E.P. Pozhidaev, Liq. Cryst. 16, 1 (2016)Google Scholar
  28. 28.
    E. Mehravar, A. AmaiaIturrospe, J. Arbe, M. Asua, J.R. Leiza, Polym. Chem. 7, 4736 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Sundaram, T. Vasanthi, P. Subhasri, T.S. Senthil, R. Jayaprakasam, V.N. Vijayakumar, Mol. Cryst. Liq. Cryst. 648, 148 (2017)CrossRefGoogle Scholar
  30. 30.
    V.N. Vijayakumar, M.L.N. Madhu Mohan, Solid State Commun. 149, 2090 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    V.N. Vijayakumar, M.L.N. Madhu Mohan, Phase Transit. 85, 113 (2012)CrossRefGoogle Scholar
  32. 32.
    Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2016).Google Scholar
  33. 33.
    S. Simon, M. Duran, J.J. Dannenberg, J. Chem. Phys. 105, 11024 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  35. 35.
    G. A. Zhurko, D. A. Zhurko, Chemcraft Program. http://www.chemcraftprog.com.
  36. 36.
    P. Subhapriya, K. Sadasivam, M.L.N. Madhu Mohan, P.S. Vijayanand, Spectrochim. Acta A Mol. Biomol. Spectrosc. 123, 511 (2014)CrossRefGoogle Scholar
  37. 37.
    N. Pongali Sathya Prabu, V.N. Vijayakumar, M.L.N. Madhu Mohan, J. Mol. Struct. 994, 387 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    B.D. Cullity, S.R. Stok, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)Google Scholar
  39. 39.
    G.W. Gray, J.W.G. Goodby, Smectic liquid crystals: textures and structures (Leonard Hill, London, 1984)Google Scholar
  40. 40.
    H.E. Stanley, Introduction to phase transition and critical phenomena (Clarendon, New York, 1971)Google Scholar
  41. 41.
    T. Ranjeethkumar, S. Sundaram, T. Vasanthi, P. Subhasri, T. Chitravel, T.S. Senthil, R. Jayaprakasam, V.N. Vijayakuma, Braz. J. Phys. 46, 649 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    T. Hanemann, M.C. Bohm, W. Haase, Liq. Cryst. 11, 917 (1992)CrossRefGoogle Scholar
  43. 43.
    S. Arulmozhi, M.V.A. Raj, J. Madhavan, Der Chem. Sin. 2, 158 (2011)Google Scholar
  44. 44.
    S. Deepthi, R. Shankar, C. Kumar, Int. J. Adv. Res. 2(30) (2014)Google Scholar
  45. 45.
    P. Subhasri, D. Venugopal, R. Jayaprakasam, V.N. Vijayakumar, Phys. B Condens. Matter 539, 78 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    R.V. Aghababian, Essentials of emergency medicine (Jones and Bartlett, 2010)Google Scholar
  47. 47.
    S.K. Saha, J. Deb, U. Sarkar, Liq. Cryst. 44, 2203 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Balachandar, M. Sethuram, P. Muthuraja, J. Photochem. Photobiol. B 163, 352 (2016)CrossRefGoogle Scholar
  49. 49.
    C.M. Paleos, D. Tsiourvas, Angew. Chem. Int. Ed. Eng. 34, 1696 (1995)CrossRefGoogle Scholar
  50. 50.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  • Vasanthi Thangavel
    • 1
  • Balasubramanian Venkataraman
    • 2
  • Subhasri Prakasan
    • 1
  • Jayaprakasam Ramasamy
    • 3
  • Vijayakumar Vellalapalayam Nallagounder
    • 1
    Email author
  1. 1.Department of Physics, Condensed Matter Research Laboratory (CMRL)Bannari Amman Institute of TechnologySathyamangalamIndia
  2. 2.Department of ScienceSona College of TechnologySalemIndia
  3. 3.Department of ChemistryBannari Amman Institute of TechnologySathyamangalamIndia

Personalised recommendations