Advertisement

On Two Discrete-Time Counterparts of a Continuous-Time Prey-Predator Model

Abstract

We report numerical results related to two discrete-time prey-predator models, which were obtained from a same continuous-time prey-predator model consisting of two nonlinear first-order ordinary differential equations. Both discretizations were derived by integrating the set of differential equations, but using different methods. Such numerical results are concerned, in each case, with parameter planes of the two-dimensional map resulting from the related discretization process. The parameter planes obtained using both maps are then compared, and we show that the occurrence of organized periodic structures embedded in a quasiperiodic region, similar to the Arnold tongues of the circle map, is verified for the two cases.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2

References

  1. 1.

    H. Singh, J. Dhar, H.S. Bhatti, . Adv. Differ. Equ. 2015, 206 (2015)

  2. 2.

    Q. Din, . Commun. Nonlinear Sci. Numer. Simulat. 49, 113 (2017)

  3. 3.

    S.M. Shah, J. Wiener, . Int. J. Math. Math. Sci. 6, 671 (1983)

  4. 4.

    J.A.C. Gallas, . Phys. Rev. Lett. 70, 2714 (1993)

  5. 5.

    S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

  6. 6.

    H.G. Schuster, W. Just. Deterministic Chaos, an Introduction (Wiley-VCH, Weinheim, 2005)

  7. 7.

    C. Bonatto, J.A.C. Gallas, . Phys. Rev. E. 75, 055204 (2007)

  8. 8.

    T.S. Krüger, P.C. Rech, . Eur. Phys. J. D. 66, 12 (2012)

  9. 9.

    H.A. Albuquerque, R.M. Rubinger, P.C. Rech, . Phys. Lett. A. 372, 4793 (2008)

  10. 10.

    P.C. Rech, . Int. J. Bifurc. Chaos. 25, 1530035 (2015)

  11. 11.

    P.C. Rech, . Phys. Scr. 91, 075201 (2016)

  12. 12.

    P.C. Rech, . Phys. Scr. 92, 045201 (2017)

  13. 13.

    M. Borghezan, P.C. Rech, . Chaos Solitons Fractals. 97, 15 (2017)

  14. 14.

    P.C. Rech, . Eur. Phys. J. B. 90, 251 (2017)

  15. 15.

    F.G. Prants, P.C. Rech, . Eur. Phys. J. B. 87, 196 (2014)

  16. 16.

    F.G. Prants, P.C. Rech, . Math. Comput. Simulation. 136, 132 (2017)

  17. 17.

    V. Wiggers, P.C. Rech, . Int. J. Bifurc. Chaos. 27, 1730023 (2017)

  18. 18.

    S.L.T. de Souza, A.M. Batista, M.S. Baptista, I.L. Caldas, J.M. Balthazar, . Physica A. 466, 224 (2017)

  19. 19.

    A. da Silva, P.C. Rech, . Chaos Solitons Fractals. 110, 152 (2018)

  20. 20.

    R.A. Dunlap. The Golden Ratio and Fibonacci Numbers (World Scientific, Singapore, 2003)

  21. 21.

    S.L.T. de Souza, A.A. Lima, I.L. Caldas, R.O. Medrano-T, Z.O. Guimarães-Filho, . Phys. Lett. A. 376, 1290 (2012)

  22. 22.

    V. Wiggers, P.C. Rech, . Eur. Phys. J. B. 91, 144 (2018)

Download references

Author information

Correspondence to Paulo C. Rech.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rech, P.C. On Two Discrete-Time Counterparts of a Continuous-Time Prey-Predator Model. Braz J Phys (2020) doi:10.1007/s13538-019-00717-x

Download citation

Keywords

  • Arnold tongues
  • Parameter planes
  • Period-adding bifurcation
  • Chaos
  • Periodicity