Advertisement

Brazilian Journal of Physics

, Volume 49, Issue 6, pp 874–886 | Cite as

Competition Between Different Decay Modes of Superheavy Element Z = 116 and Synthesis of Possible Isotopes

  • N. Sowmya
  • H. C. ManjunathaEmail author
Nuclear Physics
  • 18 Downloads

Abstract

We have predicted possible isotopes for Z = 116 by studying the competition between different decay modes such as binary, ternary, cluster radioactivity, and alpha decay. The spontaneous fission is a dominant decay mode for 274-276Lv and 295-339Lv; alpha decay is a prominent decay mode for the nuclei 277-294Lv. In the second part, we have identified the most possible projectile-target combinations to synthesize the superheavy nuclei with Z = 116. We have also identified the most suitable projectile-target combinations to form compound nucleus with Z = 116 which are 36Ar + 248Cf, 36Ar + 249Cf, 36Ar + 250Cf, 36Ar + 251Cf, 36Ar + 252Cf, 36Ar + 253Cf, 37Ar + 253Cf, 38Ar + 253Cf, 39Ar + 253Cf, 40K + 253Bk and, 40K + 254Bk. We also identified the most probable spontaneous fission fragments after alpha decay chains of 284-294Lv.

Keywords

Superheavy elements Cluster radioactivity Alpha decay Spontaneous fission Half-lives 

Notes

References

  1. 1.
    Yu. Ts. Oganessian, in Classical and Quantum Mechanical Aspects of Heavy Ion Collisions, Vol. 33 of Lecture Notes in Physics (Springer, Heidelberg), p 221, (1975)Google Scholar
  2. 2.
    Y.T. Oganessian, A.S. Iljinov, A.G. Demin, S.P. Tretyakova, Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z > 100. Nucl. Phys. A239 239, 353–364 (1975)Google Scholar
  3. 3.
    R. Smolanczuk, Phys. Rev. C 59, 5 (1999)Google Scholar
  4. 4.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, et al., Observation of the decay of 292116. Phys. Rev. C 63, 011301 (2000)Google Scholar
  5. 5.
    V.I. Zagrebaev, A.V. Karpov, W. Greiner, Possibilities for synthesis of new isotopes of superheavy elements in fusion reactions. Phys. Rev. C 85, 014608 (2012)ADSGoogle Scholar
  6. 6.
    G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl. Phys. A 633(2), 409–420 (1998)ADSGoogle Scholar
  7. 7.
    Y. Aritomo, T. Wada, M. Ohta, Y. Abe, Phys. Rev. C 59, 2 (1999)Google Scholar
  8. 8.
    P. Armbruster, Shifting the closed proton shell to Z = 122 —a possible scenario to understand the production of superheavy elements Z = 112−118. Eur. Phys. J. A 37, 159–167 (2008)ADSGoogle Scholar
  9. 9.
    Y.K. Gambhir, A. Bhagwat, M. Gupta, Phys. Rev. C 71, 037301 (2005)ADSGoogle Scholar
  10. 10.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, Synthesis of the isotopes of elements 118 and 116 in the Cf249 and Cm245+Ca48 fusion reactions. Phys. Rev. C 74, 044602 (2006)Google Scholar
  11. 11.
    A. Yakushev, J.M. Gates, A. Turler, M. Schadel, Inorg. Chem. 53(3), 1624–1629 (2014)Google Scholar
  12. 12.
    Y.T. Oganessian, F.S. Abdullin, P.D. Bailey, D.E. Benker, Eleven new heaviest isotopes of elements Z=105 to Z=117identified among the products of Bk249+Ca48 reactions. Phys. Rev. C 83, 054315 (2011)Google Scholar
  13. 13.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, et al., Phys. Rev. C 69, 054607 (2004)ADSGoogle Scholar
  14. 14.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions U233, 238, Pu242, and Cm248+Ca48. Phys. Rev. C 70, 064609 (2004)Google Scholar
  15. 15.
    M.M. Sharma, A.R. Farhan Phys. Rev. C 71(5) (2004)Google Scholar
  16. 16.
    H. Zhang, J. Li, W. Zuo, Z. Ma, B. Chen, S. Im, Properties of the superheavy element 287115 and its α-decay time. Phys. Rev. C 71, 054312 (2005)Google Scholar
  17. 17.
    Y.T. Oganessian, A.G. Demin, A.S. Iljnov, et al., Synthesis of nuclei of the superheavy element 114 in reactions induced by 48Ca. Nature 400, 242–245 (1999)ADSGoogle Scholar
  18. 18.
    Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, O.V. Ivanov, G.V. Buklanov, K. Subotic, M.G. Itkis, K.J. Moody, J.F. Wild, N.J. Stoyer, M.A. Stoyer, R.W. Lougheed, Synthesis of superheavy nuclei in the48Ca+244Pureaction:288114, Phys. Rev. C 62, 041604(R) (2000)Google Scholar
  19. 19.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Experiments on the synthesis of element 115 in the reaction Am243(Ca48,xn)115291−x. Phys. Rev. C 69, 021601(R) (2004)Google Scholar
  20. 20.
    Z.-Q. Feng, G.-M. Jin, J.-Q. Li, W. Scheid, Nucl. Phys. A 816(1–4), 33–51 (2009)ADSGoogle Scholar
  21. 21.
    G. Royer, R.A. Gherghescu, On the formation and alpha decay of superheavy elements. Nucl. Phys. A 699, 479–492 (2002)ADSGoogle Scholar
  22. 22.
    G. Royer, Analytic expressions for alpha-decay half-lives and potential barriers. Nucl. Phys. A 848, 279–291 (2010)ADSGoogle Scholar
  23. 23.
    E.K. Hulet, R.W. Lougheed, J.F. Wild, J.H. Landrum, et al., Phys. Rev. Lett. 39, 7 (1977)Google Scholar
  24. 24.
    E.M. Kozulin, G.N. Knyazheva, I.M. Itkis, M.G. Itkis, et al., Fusion-fission and quassifission of superheavy systems with Z = 110–116 formed in 48Ca-induced reactions. Phys. Rev. C 90, 054608 (2014)Google Scholar
  25. 25.
    K.N. Sridhar, H.C. Manjunatha, H.B. Ramalingam, Search for possible fusion reactions to synthesize the superheavy element Z=121. Phys. Rev. C 98, 064605 (2018)ADSGoogle Scholar
  26. 26.
    H.C. Manjunatha, K.N. Sridhar, N. Sowmya, Investigations of the synthesis of the superheavy element Z=122. Phys. Rev. C 98, 024308 (2018)ADSGoogle Scholar
  27. 27.
    H.C. Manjunatha, K.N. Sridhar, Investigation to synthesis more isotopes of superheavy nuclei Z = 118. Nucl. Phys. A 975, 136–153 (2018)ADSGoogle Scholar
  28. 28.
    S. Hofmann, S. Heinz, R. Mann, J. Maurer, Review of even element super-heavy nuclei and search for element 120. Eur. Phys. J. A 52, 180 (2016)ADSGoogle Scholar
  29. 29.
    H.C. Manjunatha, Alpha decay properties of superheavy nuclei Z = 126. Nucl. Phys. A 945, 42–57 (2016)ADSGoogle Scholar
  30. 30.
    H.C. Manjunatha, N. Sowmya, Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z = 126. Nucl. Phys. A 969, 68–82 (2018)ADSGoogle Scholar
  31. 31.
    H.C. Manjunatha, N. Sowmya, Int. J. Mod. Phys. E 27, 5 (2018)Google Scholar
  32. 32.
    V.Y. Denisov, H. Ikezoe, α-Nucleus potential for α-decay and sub-barrier fusion. Phys. Rev. C 72, 064613 (2005)ADSGoogle Scholar
  33. 33.
    V.Y. Denisov, A.A. Khudenko, At. Data Nucl. Data Tables 95, 815–835 (2009)ADSGoogle Scholar
  34. 34.
    B. Nerlo-Pomorska, K. Pomorski, Simple formula for nuclear charge radius. Physik A - Hadrons and Nuclei 348, 169–172 (1994)ADSGoogle Scholar
  35. 35.
    C.Y. Wong, Fusion threshold energy in heavy-ion reactions. Phys. Lett. B 42, 186–190 (1972)ADSGoogle Scholar
  36. 36.
    C. Xu, Z. Ren, Y. Guo, Competition between α decay and spontaneous fission for heavy and superheavy nuclei. Phys. Rev. C 78, 044329 (2008)Google Scholar
  37. 37.
    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Proximity forces. Ann. Phys. NY 105, 427–462 (1977)ADSGoogle Scholar
  38. 38.
    J. Blocki, W.J. Swiatecki, A generalization of the proximity force theorem. Ann. Phys. NY 132, 53–65 (1983)ADSGoogle Scholar
  39. 39.
    W. Loveland, Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C 76, 014612 (2007)ADSGoogle Scholar
  40. 40.
    Z.H. Liu, J.D. Bao, Systematical calculations of the136Xe(136Xe,xn)272−xHsreaction: effects of quasifission in the early stage of the fusion process. Phys. Rev. C 81, 044606 (2010)ADSGoogle Scholar
  41. 41.
    J.D. Jackson, A schematic model for (p,xn) cross sections in heavy elements. Can. J. Phys. 34, 767–779 (1956)ADSGoogle Scholar
  42. 42.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)Google Scholar
  43. 43.
    I. Dutt, R.K. Puri, Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Phys. Rev. C 81, 047601 (2010)ADSGoogle Scholar
  44. 44.
    J. Blocki, W.J. Świątecki, A generalization of the Proximity Force Theorem. Ann. Phys. NY 132, 53–65 (1981)ADSGoogle Scholar
  45. 45.
    D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Atomic nuclei decay modes by spontaneous emission of heavy ions. Phys. Rev. C 32, 572–582 (1985)ADSGoogle Scholar
  46. 46.
    H.C. Manjunatha, N. Sowmya, K.N. Sridhar, L. Seenappa, A study of probable alpha-ternary fission fragments of 257Fm. J. Radioanal. Nucl. Chem. 314, 991–999 (2017)Google Scholar
  47. 47.
    P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)ADSGoogle Scholar
  48. 48.
    H.C. Manjunatha, B.M. Chandrika, L. Seenappa, Empirical formula for mass excess of heavy and superheavy nuclei. Mod. Phys. Lett. A 31(28), 1650162 (2016)ADSGoogle Scholar
  49. 49.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, The Ame2012 atomic mass evaluation. Chin. Phys. Rev. C 36, 1603–2014 (2012)Google Scholar
  50. 50.
    H.C. Manjunatha, N. Sowmya, Pocket formula for mass excess of nuclei in the range 57 < Z < 103. Mod. Phys. Lett. A 34(15), 1950112 (2019)ADSGoogle Scholar
  51. 51.
    V.E. Viola Jr., G.T. Seaborg, Nuclear systematics of the heavy elements—II lifetimes for alpha, beta and spontaneous fission decay. J. Inorganic. Nuclear. Chemistry 28, 741–761 (1966)Google Scholar
  52. 52.
    G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G: Nucl. Part. Phys. 26, 1149–1170 (2000)ADSGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment College for WomenKolarIndia
  2. 2.Department of Physics, BMSITAffiliated to VTUBangaloreIndia

Personalised recommendations