Brazilian Journal of Physics

, Volume 49, Issue 6, pp 897–913 | Cite as

Mass Evolution of Schwarzschild Black Holes

  • Natalí Soler Matubaro de SantiEmail author
  • Raphael Santarelli
Particles and Fields


In the classical theory of general relativity, black holes can only absorb and not emit particles. When quantum mechanical effects are taken into account, then the black holes emit particles as hot bodies with temperature proportional to κ, its surface gravity. This thermal emission can lead to a slow decrease in the mass of the black hole, and eventually to its disappearance, also called black hole evaporation. This characteristic allows us to analyze what happens with the mass of the black hole when its temperature is increased or decreased and how the energy is exchanged with the external environment. This paper has the aim to make a discussion about the mass evolution, due to Hawking radiation emission, of Schwarzschild black holes with different initial masses and external conditions as the empty space, the cosmic microwave background with constant temperature, and with temperature varying in accordance with the eras of the universe. Our main contributions are to take into account these variations in the temperature of the cosmic background radiation and use them into the black holes dynamics and also to analyze the asymptotic behavior of the solutions. As a result, we have the complete evaporation of the black holes in most cases, although their masses can increase in some cases, and even diverge for specific conditions.


Black hole thermodynamics Black hole evaporation Mass evolution of black holes Schwarzschild black hole 



We would like to thank Prof. Dr. Alberto Vazquez Saa for overall support and comments. We are also grateful to “Conselho Nacional de Desenvolvimento Cientifico e Tecnologico” (CNPq) for financial support.


  1. 1.
    J.K. Martin, A.J. Kox, R. Schulman, Vol. 6. The Collected Papers of Albert Einstein (Princeton University Press, New Jersey, 1996)Google Scholar
  2. 2.
    S.M. Carroll. Spacetime and Geometry (Addison Wesley, San Francisco, 2004)zbMATHGoogle Scholar
  3. 3.
    R.M. Wald. General Relativity (University of Chicago Press, Chicago, 1984)zbMATHGoogle Scholar
  4. 4.
    J.B. Hartle. Gravity: an Introduction to General Relativity (Addison-Wesley, San Francisco, 2003)Google Scholar
  5. 5.
    B.F. Schutz. A First Course in General Relativity (Cambridge University Press, New York, 2009)zbMATHGoogle Scholar
  6. 6.
    R. d’Inverno. Introducing Einstein’s Relativity (Claredon Press, Oxford New York, 1998)zbMATHGoogle Scholar
  7. 7.
    C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation (Freemand and Company, San Francisco, 1973)Google Scholar
  8. 8.
    S. Chandrasekhar, . Mont. Not. R. Astron. Soc. 95, 207–225 (1935)ADSGoogle Scholar
  9. 9.
    R. Penrose, . Gen. Relat. Gravit. 34, 1141–1165 (2002)ADSGoogle Scholar
  10. 10.
    J.R. Oppenheimer, H. Snyder, . Phys. Rev. 56, 455–459 (1939)ADSMathSciNetGoogle Scholar
  11. 11.
    K. Schwarzschild, . Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.Phys). 3, 189–196 (1999). Tradução por Antoci, S. e Loinger. AGoogle Scholar
  12. 12.
    R.P. Kerr, . Phys. Rev. Lett. 11, 237–238 (1963)ADSMathSciNetGoogle Scholar
  13. 13.
    R.W. Brehme, . Am. J. Phys. 45, 423–428 (1977)ADSGoogle Scholar
  14. 14.
    R. Ruffini, J.A. Wheeler, . Phys. Today. 24, 30–41 (1971)ADSGoogle Scholar
  15. 15.
    R. Blandford, N. Gehrels, . Phys. Today. 52, 40–46 (1999)Google Scholar
  16. 16.
    L.I. Schiff, . Am. J. Phys. 28, 340–343 (1960)ADSGoogle Scholar
  17. 17.
    C.M. Will, . Living Rev. Relativ. 9, 1–100 (2001)Google Scholar
  18. 18.
    S. Deser, . Rev. Mod. Phys. 29, 417–423 (1957)ADSMathSciNetGoogle Scholar
  19. 19.
    A Shomer, arXiv: (2007)
  20. 20.
    A. Macias, A. Camacho, . Phys. Lett. B. 663, 99–102 (2008)ADSMathSciNetGoogle Scholar
  21. 21.
    S.W. Hawking, R. Penrose, . Proc. Roy. Soc. Lond. A. 314, 529–548 (1970)ADSGoogle Scholar
  22. 22.
    V. Mukhanov, S. Winitzki. Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, 2007)zbMATHGoogle Scholar
  23. 23.
    L.E. Parker, D.J. Toms. Quantum Field Theory in Curved Spacetime (Cambridge University Press, United Kingdom, 2009)zbMATHGoogle Scholar
  24. 24.
    N.D. Birrel, P.C.W. Davies. Quantum Fields in Curved Space (Cambridge University Press, New York, 1982)Google Scholar
  25. 25.
    S.A. Fulling. Aspects of Quantum Field Theory in Curved Spacetime (Cambridge University Press, New York, 1982)Google Scholar
  26. 26.
    R.M. Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago/London, 1994)zbMATHGoogle Scholar
  27. 27.
    I. Klebanov, J. Maldecena, . Phys. Today. 62, 28 (2009)Google Scholar
  28. 28.
    S.W. Hawking, . Comm. Math Phys. 43, 199–220 (1975)ADSMathSciNetGoogle Scholar
  29. 29.
    J.D. Bekenstein, . Phys. Rev. D. 7, 2333–2346 (1973)ADSMathSciNetGoogle Scholar
  30. 30.
    S.W. Hawking, . Commun. Math Phys. 25, 152–166 (1972)ADSGoogle Scholar
  31. 31.
    M.C. LoPresto, . Phys. Teacher. 41, 299–301 (2003)ADSGoogle Scholar
  32. 32.
    B.R. Parker, R.J. McLeod, . Am. J. Phys. 48, 1066–1070 (1980)ADSGoogle Scholar
  33. 33.
    J.D. Bekenstein, . Phys. Today. 33, 24–31 (1980)ADSGoogle Scholar
  34. 34.
    J.D. Bekenstein, . Phys. Rev. D. 12, 3077–3085 (1975)ADSGoogle Scholar
  35. 35.
    S.W. Hawking, . Phys. Rev. D. 13, 191–197 (1976)ADSGoogle Scholar
  36. 36.
    P.-H. Lambert, arXiv: (2013)
  37. 37.
    F. Belgiorno, M. Martellini, . Int. J. Mod. Phys. D. 13, 739–770 (2004)ADSGoogle Scholar
  38. 38.
    J.H. Traschen, arXiv: (2000)
  39. 39.
    N.S.M. de Santi, R. Santarelli, . Rev. Bras. Ens. Fis. 41, e20180312 (2019)Google Scholar
  40. 40.
    W.G. Unruh, R.M. Wald, . Rep. Prog. Phys. 80, 092002 (2017)ADSGoogle Scholar
  41. 41.
    K. Thorne, R. Blanford. Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity and Statistical Physics (Princeton University Press, New Jersey, 2017)Google Scholar
  42. 42.
    F. Reif. Fundamentals of Statistical and Thermal Physics (McGray-Hill, New York, 1965)Google Scholar
  43. 43.
    H.B. Callen. Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)zbMATHGoogle Scholar
  44. 44.
    R.A. Jacobson, P.G.A. Treasian, J.J. Bordi, K.E. Criddle, R. Ionasescu, J.B. Jones, R.A. Mackenzie, M.C. Meek, D. Parcher, F.J. Pelletier, J.W.M. Owen, D.C. Roth, I.M. Roundhill, J.R. Stauuch, . AJ. 132(6), 2520–2526 (2006)ADSGoogle Scholar
  45. 45.
    K.A. Olive, et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)ADSGoogle Scholar
  46. 46.
    A.M. Ghez, S. Salim, N.N. Weinberg, J.R. Lu, T. Do, J.K. Dunn, K. Matthews, M. Morris, S. Yelda, E.E. Becklin, et al., . Astrophys. J. 689, 1044–1062 (2008)ADSGoogle Scholar
  47. 47.
    D.F. Page, . Phys. Rev. D. 13, 198–206 (1976)ADSGoogle Scholar
  48. 48.
    V. Faraoni, . Am. J. Phys. 85, 865 (2017)ADSGoogle Scholar
  49. 49.
    P. Rioseco, O. Sarbach, . Class. Quantum Grav. 34, 095007 (2017)ADSGoogle Scholar
  50. 50.
    E. Bianchi, M. Christodoulou, F. D’Ambrosio, H.M. Haggard, C. Rovelli, . Class. Quantum Grav. 35, 225003 (2018)ADSGoogle Scholar
  51. 51.
    J.E. Horvath, P.S. Custódio, Braz. J. Phys. 35 (2005)ADSGoogle Scholar
  52. 52.
    E. Abdalla, C.B.M.H. Chirenti, A. Saa, . J. High Energy Phys. 2007, 086 (2007)Google Scholar
  53. 53.
    Y. Nomura, . Phys. Rev. D. 99, 086004 (2019)ADSMathSciNetGoogle Scholar
  54. 54.
    N.S.M. de Santi. Termodinâmica De Buracos Negros De Schwarzschild (Universidade Federal de São Carlos, Dissertação de mestrado, 2018)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Physics DepartmentFederal University of São CarlosSão CarlosBrazil

Personalised recommendations