Advertisement

Brazilian Journal of Physics

, Volume 49, Issue 6, pp 859–863 | Cite as

Significance of Entangling Operators in Quantum Two Penny Flip Game

  • Sundaresh Sankrith
  • Bihag Dave
  • S. BalakrishnanEmail author
General and Applied Physics
  • 29 Downloads

Abstract

For every rule of a single penny flip game, there exists a unitary operation as a winning strategy for a quantum player. Now, in the two penny flip game, an extra option is available, viz. the use of entangling operators. However, it is known that entangling operators are not useful in this case, and a tensor product of unitary operators works just fine. In this work, we look for the significance of the entangling operators, if any, under the situation that the options available to the classical player are expanded. We extend the problem to a more general case and it is shown that there is no entangling operator capable of guaranteeing the victory of the quantum player. Eventually, we reach the classical game situation in a quantum setup of a game.

Keywords

Quantum games Penny flip game Two-qubit operator Entangling operator Quantum circuits 

Notes

References

  1. 1.
    J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Wiley, New York, 1967)zbMATHGoogle Scholar
  2. 2.
    J. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D.A. Meyer, Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Gui, J. Zhang, G.J. Koehler, Dec. Supp. Sys 46, 318 (2008)CrossRefGoogle Scholar
  5. 5.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  6. 6.
    J. Eisert, M. Wilkens, M. Lewenstein, Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Marinatto, T. Weber, A quantum approach to static games of complete information. Phys. Letts. A. 272, 291–303 (2000)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Du, X. Xu, H. Li, X. Zhou, R. Han, Entanglement playing a dominating role in quantum games. Phys. Letts. A. 289, 9–15 (2001)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.P. Flitney, D. Abbott, Advantage of a quantum player over a classical one in 2 × 2 quantum games. Proc. R. Soc. London. 459, 2463–2474 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    D.P. DiVincenzo, Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    S. Balakrishnan, R. Sankaranarayanan, Classical rules and quantum strategies in penny flip game. Quantum Inf. Process 12, 1261–1268 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J.M. Chappell, A. Iqbal, M.A. Lohe, L.V. Smekal, An Analysis of the quantum penny flip game using geometric algebra. J. Phys. Soc. Jpn. 78, 054801 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R. Heng-Feng, W. Qing-Liang, Int. J. Theor.Phys. 47, 1828 (2008)CrossRefGoogle Scholar
  15. 15.
    X.-B. Wang, L.C. Kwek, C.H. Oh, Phys. Lett. A 278, 44 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    N. Anand, C. Benjamin, Do quantum strategies always win? Quantum Inf. Process 14, 4027–4038 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A.T. Rezakhani, Characterization of two-qubit perfect entanglers. Phys. Rev. A 70, 052313 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Zhang, J. Vala, K.B. Whaley, S. Sastry, Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Balakrishnan, R. Sankaranarayanan, Operator-Schmidt decomposition and the geometrical edges of two-qubit gates. Quantum Inf. Process 10(4), 449–461 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  • Sundaresh Sankrith
    • 1
  • Bihag Dave
    • 1
  • S. Balakrishnan
    • 1
    Email author
  1. 1.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations