Advertisement

Brazilian Journal of Physics

, Volume 49, Issue 3, pp 333–340 | Cite as

Effects of Moisture on Structure and Electrophysical Properties of a Ferroelectric Composite from Nanoparticles of Cellulose and Triglycine Sulfate

  • Bich Dung Mai
  • Hoai Thuong NguyenEmail author
  • Dinh Hien Ta
Condensed Matter
  • 17 Downloads

Abstract

In this study, a novel ferroelectric composite consisting of triglycine sulfate and cellulose nanoparticles at different weight composition ratios was successfully synthesized. A comparative study on structure and electrophysical properties for dried and wet composite samples was carried out. The measurements of electrophysical parameters were performed from 10 to 120 °C under a weak electric field with an amplitude of 1 V cm−1 at low and infra-low frequencies (10−3–103 Hz) under different relative humidities of 0, 30, 60, 80, and 100%. The characterization results showed a significant impact of moisture on crystallinity and features of functional groups in the composite. Besides, phase transition temperature of the composite increased by 3 to 63 °C higher than those for single crystal of triglycine sulfate (+ 49 °C) in dependence on cellulose content in the composite. Along with a significant increase in dielectric constant, dielectric loss, and dielectric dispersion in the composite due to high conductivity caused by moisture, the water molecules on sample surface led to the appearance of addition peaks in temperature dependences of dielectric constant and dielectric loss tangent in the initial stage of heating. All the anomalies can be explained by the strong interaction through hydrogen bonds between triglycine sulfate and cellulose components as well as between these components and water molecules in the composite.

Keywords

Nanocomposites Ferroelectrics Humidity Phase transition Cellulose 

Notes

References

  1. 1.
    C.P. Baldé, F. Wang, R. Kuehr, J. Huisman, The Global E-Waste Monitor – 2014, (United Nations University, IAS – SCYCLE, Bonn, Germany, 2015)Google Scholar
  2. 2.
    I.-V. Mihai, E.D. Glowacki, N.S. Sariciftci, S. Bauer, Green Materials for Electronics, (Wiley-VCH Verlag GmbH & Co. KGaA, 2018). Print ISBN:9783527338658 |Online ISBN:9783527692958 | https://doi.org/10.1002/9783527692958, https://onlinelibrary.wiley.com/doi/book/10.1002/9783527692958
  3. 3.
    B. Peng, P.K.L. Chan, Flexible organic transistors on standard printing paper and memory properties induced by floated gate electrode. Org. Electron. 15, 203–210 (2014).  https://doi.org/10.1016/j.orgel.2013.11.006 CrossRefGoogle Scholar
  4. 4.
    N.H. Thu’o’ng, A.S. Sidorkin, S.D. Milovidova, Dispersion of dielectric permittivity in a nanocrystalline cellulose–triglycine sulfate composite at low and ultralow frequencies. Phys. Solid State 60, 559–565 (2018).  https://doi.org/10.1134/S1063783418030320 ADSCrossRefGoogle Scholar
  5. 5.
    S. Thiemann, S.J. Sachnov, F. Pettersson, R. Bollström, R. Österbacka, P. Wasserscheid, J. Zaumseil, Cellulose-based ionogels for paper electronics. Adv. Funct. Mater. 24, 625–634 (2014).  https://doi.org/10.1002/adfm.201302026 CrossRefGoogle Scholar
  6. 6.
    E.F. Gomez, A.J. Steckl, Improved performance of OLEDs on cellulose/epoxy substrate using adenine as a hole injection layer. ACS Photonics 2, 439–445 (2015).  https://doi.org/10.1021/ph500481c CrossRefGoogle Scholar
  7. 7.
    M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulović, K.K. Gleason, Paper. Adv. Mater. 23, 3500–3505 (2011).  https://doi.org/10.1002/adma.201101263 CrossRefGoogle Scholar
  8. 8.
    S. Li, J.A. Eastman, Z. Li, C.M. Foster, R.E. Newnham, Size effects in nanostructured ferroelectrics. Phys. Let. A 212, 341–346 (1996).  https://doi.org/10.1016/0375-9601(96)00077-1 ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    S.D. Milovidova, A.S. Sidorkin, O.V. Rogazinskaya, E.V. Vorotnikov, Dielectric properties of the mixed nanocomposites: triglycine sulfate - silica. Ferroelectrics 497, 69–73 (2016).  https://doi.org/10.1080/00150193.2016.1162620 CrossRefGoogle Scholar
  11. 11.
    Y. Yang, H.L.W. Chan, C.L. Choy, Properties of triglycine sulfate/poly(vinylidene fluoride-trifluoroethylene) 0–3 composites. Frontiers of Ferroelectricity ((Springer, Boston, 2006)Google Scholar
  12. 12.
    A. Plyushch, J. Macutkevic, V. Samulionis, J. Banys, D. Bychanok, P. Kuzhir, S. Mathieu, V. Fierro, A. Celzard, Polym. Compos. (2018).  https://doi.org/10.1002/pc.24932
  13. 13.
    V.E. Khutorsky, S.B. Lang, Very strong influence of moisture on pyroelectric and dielectric properties of triglycine sulfate-gelatin films. J. Appl. Phys. 82, 1288–1292 (1997).  https://doi.org/10.1063/1.365900 ADSCrossRefGoogle Scholar
  14. 14.
    O.M. Golitsyna, S.N. Drozhdin, A.E. Gridnev, Influence of the humidity on dielectric characteristics of porous aluminum oxide with inclusions of triglycine sulfate. Phys. Solid State 54, 1961–1965 (2012).  https://doi.org/10.1134/S1063783412100149 ADSCrossRefGoogle Scholar
  15. 15.
    H.T. Nguyen, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, Influence of humidity on dielectric properties of nanocrystalline cellulose – triglycine sulfate composites. Ferroelectrics 501, 180–186 (2016).  https://doi.org/10.1080/00150193.2016.1204866 CrossRefGoogle Scholar
  16. 16.
    T. Fattahi Meyabadi, F. Dadashian, G. Mir Mohamad Sadeghi, H. Ebrahimi Zanjani Asl, Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol. 261, 232–240 (2014).  https://doi.org/10.1016/j.powtec.2014.04.039 CrossRefGoogle Scholar
  17. 17.
    P. Lu, Y.-L. Hsieh, Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym. 82, 329–336 (2010).  https://doi.org/10.1016/j.carbpol.2010.04.073 CrossRefGoogle Scholar
  18. 18.
    J. Zhang, T.J. Elder, Y. Pu, A.J. Ragauskas, Facile synthesis of spherical cellulose nanoparticles. Carbohydr. Polym. 69, 607–611 (2007).  https://doi.org/10.1016/j.carbpol.2007.01.019 CrossRefGoogle Scholar
  19. 19.
    P.B. Filson, B.E. Dawson-Andoh, D. Schwegler-Berry, Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11, 1808 (2009).  https://doi.org/10.1039/B915746H CrossRefGoogle Scholar
  20. 20.
    S.-S. Wong, S. Kasapis, Y.M. Tan, Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydr. Polym. 77, 280–287 (2009).  https://doi.org/10.1016/j.carbpol.2008.12.038 CrossRefGoogle Scholar
  21. 21.
    P. Satyamurthy, P. Jain, R.H. Balasubramanya, N. Vigneshwaran, Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr. Polym. 83, 122–129 (2011).  https://doi.org/10.1016/j.carbpol.2010.07.029 CrossRefGoogle Scholar
  22. 22.
    N. Sinha, S. Bhandari, H. Yadav, G. Ray, S. Godara, N. Tyagi, J. Dalal, S. Kumar, B. Kumar, Performance of crystal violet doped triglycine sulfate single crystals for optical and communication applications. Cryst. Eng. Comm. 17, 5757–5767 (2015).  https://doi.org/10.1039/C5CE00703H CrossRefGoogle Scholar
  23. 23.
    Y. Cao, H. Tan, Structural characterization of cellulose with enzymatic treatment. J. Mol. Struct. 705, 189–193 (2004).  https://doi.org/10.1016/j.molstruc.2004.07.010 ADSCrossRefGoogle Scholar
  24. 24.
    S.Y. Oh, D.I. Yoo, Y. Shin, G. Seo, FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 340, 417–428 (2005).  https://doi.org/10.1016/j.carres.2004.11.027 CrossRefGoogle Scholar
  25. 25.
    L. Wang, Y. Zhang, P. Gao, D. Shi, H. Liu, H. Gao, Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93, 443–456 (2006).  https://doi.org/10.1002/bit.20730 CrossRefGoogle Scholar
  26. 26.
    H. Zhao, J.H. Kwak, Z.C. Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr. Polym. 68, 235–241 (2007).  https://doi.org/10.1016/j.carbpol.2006.12.013 CrossRefGoogle Scholar
  27. 27.
    S.V. Baryshnikov, A.Y. Milinskiy, E.V. Charnaya, A.S. Bugaev, M.I. Samoylovich, Dielectric studies of ferroelectric NH4HSO4 nanoparticles embedded into porous matrices. Ferroelectrics 493, 85–92 (2016).  https://doi.org/10.1080/00150193.2016.1134174 CrossRefGoogle Scholar
  28. 28.
    S.D. Milovidova, O.V. Rogazinskaya, A.S. Sidorkin, H.T. Nguyen, E.V. Grohotova, N.G. Popravko, Dielectric properties of composites based on nanocrystalline cellulose with triglycine sulfate. Ferroelectcrics 469, 116–506 (2014).  https://doi.org/10.1134/S1063783415030178 CrossRefGoogle Scholar
  29. 29.
    A.Y. Milinskii, S.V. Baryshnikov, H.T. Nguyen, Dielectric properties of nanocomposites based on potassium iodate with porous nanocrystalline cellulose. Ferroelectrics 524, 181–188 (2018).  https://doi.org/10.1080/00150193.2018.1432830 CrossRefGoogle Scholar
  30. 30.
    H.T. Nguyen, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, Investigation of dielectric relaxation in ferroelectric composite nanocrystalline cellulose – triglycine sulfate. Ferroelectrics 498, 27–35 (2016).  https://doi.org/10.1080/00150193.2016.1166835 CrossRefGoogle Scholar
  31. 31.
    T.R. Volk, S.V. Mednikov, L.A. Shuvalov, Unipolarity of Tgs-crystals induced in paraelectric phase. Ferroelectrics 47, 15–23 (1983).  https://doi.org/10.1080/00150198308227816 CrossRefGoogle Scholar
  32. 32.
    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977).  https://doi.org/10.1038/267673a0 ADSCrossRefGoogle Scholar
  33. 33.
    H.T. Nguyen, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, Electrophysical properties of matrix composites nanocrystalline cellulose – triglycine sulfate. Ferroelectrics 512, 71–76 (2017).  https://doi.org/10.1080/00150193.2017.1349900 CrossRefGoogle Scholar
  34. 34.
    V.L. Ginzburg, Theory of ferroelectric phenomena. Usp. Fiziol. Nauk 38, 390 (1949)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Institute of Biotechnology and Food TechnologyIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Electrical and Electronics Engineering TechnologyHo Chi Minh City University of Food IndustryHo Chi Minh CityVietnam

Personalised recommendations