Advertisement

Evolution of Statistical Properties of Hybrid System Starting from Binary Field States Constructed in Experiments

  • C. J. S. FerreiraEmail author
  • C. Valverde
  • B. Baseia
Condensed Matter
  • 13 Downloads

Abstract

In quantum optics, researchers usually study evolution of states starting from traditional ones: coherent, squeezed, Fock, and their superpositions. In a recent work (Ferreira et al. Int. J. Mod. Phys. B, 1850222, 2018), we discussed an example of ex- periment involving “atom”-field interaction allowing us to construct a list of field states inside a high-Q microwave cavity. The procedure employed a dispersive Hamiltonian ensuring both sub-systems to remain with only two Fock state components for all times of their evolution. The aim was to use this sequence of states having pre-selected properties as initial states in other investigations. Here, we use an updated platform and a variety of states at our disposal in the mentioned list to study the evolution of a hybrid system under the action of the Jaynes-Cummings Hamiltonian. Interesting results are obtai- ned, e.g., when we examine how the “atomic” population inversion and field statistics evolve in time from initial field states with different degrees of super- and sub-Poissonian effects. The experimental feasibility of the proposal was also discussed.

Keywords

Atom-field interaction High-Q microwave cavity Jaynes-Cummings Hamiltonian 

Notes

Funding Information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This study received partial supports from the Brazilian funding agencies Capes, CNPq and FAPEG. Research developed with support of the High-Performance Computing Center at the Universidade Estadual de Goiás (UEG).

References

  1. 1.
    C.J.S. Ferreira, C. Valverde, B. Baseia, Atom-field interaction in optical cavities: calibration of the atomic velocities to obtain a list of field states with preselected properties, Int. J. Mod. Phys. B, 1850222 (2018)Google Scholar
  2. 2.
    D. Stoler, Equivalence classes of minimum uncertainty packets. Phys. Rev. D. 1, 3217 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    D.F. Walls, Squeezed states if light. Nature. 306, 141 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    M. Dagenais, L. Mandel, Investigation of two-time correlations in photon emissions from a single atom. Phys. Rev. A. 18, 2217 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H.J. Carmichael, D.F. Wall, A quantum mechanical master equation treatment of the dynamical Stark effect. J. Phys. B. 9, 1199 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    H.J. Kimble, M. Degenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    R. Brouri, et al., Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294 (2000). and references [12,13] thereinADSCrossRefGoogle Scholar
  9. 9.
    B. Short, L. Mandel, Observation of Sub-Poissonian photon statistics. Phys. Rev. Lett. 51, 384 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    G. Rempe, F. Schmidt-Kaler, H. Walther, Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783 (1990). and references thereinADSCrossRefGoogle Scholar
  11. 11.
    R.E. Slusher, et al., Observation of squeezed states generated by Four-Wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    L.-A. Wu, et al., Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in one atom maser. Phys. Rev. Lett. 58, 353 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    M. Greiner, et al., Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature. 419, 51–54 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    P. Meystre, Cavity quantum optics and the quantum measurement process. Prog. Opt. 30, 261 (1992)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    P.R. Berman. Cavity Quantum Electrodynamics (Academic Press, Boston, 1994)Google Scholar
  17. 17.
    J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Brune, et al., Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. Phys. Rev. Lett. 65, 976 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    L. Davidovich, et al., Mesoscopic quantum coherences in cavity QED: preparation and decoherence monitoring schemes. Phys. Rev. A. 53, 1295 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Z.-L. Xiang, et al., Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature. 29, 474 (2011)Google Scholar
  22. 22.
    C. Valverde, V. G. Gonçalves, B. Baseia, Controlling the nonclassical properties of a hybrid Cooper pair box system and an intensity dependent nanomechanical resonator. Phys. A. 446, 171 (1916)CrossRefzbMATHGoogle Scholar
  23. 23.
    M. Brune, et al., Observing the decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    P. Wolfang, et al., Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Brune, et al., Manipulation of photons in a cavity by dispersive atom- field coupling: Quantum-nondemolition measurements and generation of “Schrodinger cat” states. Phys. Rev. A. 45, 5193 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    E.I. Duzzioni, et al., Nonadiabatic geometric phase induced by a counterpart of the Stark shift. Europhys. Lett. 72, 21 (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J.G. Peixoto de Faria, M.C. Nemes, Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation: analytical results. Phys. Rev. A. 59, 3918 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    L.G. Lutterbach, L. Davidovich, Method for direct measurement of the wigner function in cavity QED and ion traps. Phys. Rev. Lett. 78(13), 2547 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H.M. Nussenzveig. Introduction to Quantum Optics (Gordon and Breach, London, 1973)Google Scholar
  31. 31.
    C.C. Gerry, P.L. Knight. Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005), p. 105Google Scholar
  32. 32.
    C.M.A. Dantas, B. Baseia, Noncoherent states having Poissonian statistics. Phys. A. 265, 176 (1999)CrossRefGoogle Scholar
  33. 33.
    D.T. Pegg, L.S. Phillips, S.M. Barnett, Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    M.H.Y. Moussa, B. Baseia, Generation of the reciprocal-binomial state. Phys. Let. A. 238, 223 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M.E. Marhic, P. Kumar, Squeezed states with a thermal photon distribution. Opt. Commun. 76, 143 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    B. Baseia, C.M.A. Dantas, M.H.Y. Moussa, Pure states having thermal photon distribution revisited: generation and phase-optimization. Phys. A. 258, 203 (1998)CrossRefGoogle Scholar
  37. 37.
    L. Mandel, Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 2015 (1979)CrossRefGoogle Scholar
  38. 38.
    M. Hillery, Nonclassical distance in quantum optics. Phys. Rev. A. 35, 725 (1987)ADSCrossRefGoogle Scholar
  39. 39.
    J.M.C. Malbouisson, B. Baseia, On the measure of nonclassicality of field states. Phys. Scripta. 67, 93 (1987)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    C.T. Lee, Measure of the nonclassicality of nonclassical states. Phys. Rev. A. 44, R2775 (1991)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    V.V. Dodonov, O.V. Man’ko, V.I. Man’ko, A. Wünsche, Hilbert-schmidt distance and nonclassicality of states in quantum optics. J. Mod. Opt. 47, 633 (2000)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    M. Hillery, Classical pure states are coherent states. Phys. Lett. A. 111(8), 409 (1985)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    K.P. Zetie, S.F. Adams, R.M. Tocknell, How does a Mach-Zehnder interferometer work? Phys. Educ. 35(1), 46 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    C.C. Gerry, Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium. Phys. Rev. A. 59(5), 4095 (1999)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A.T. Avelar, J.M.C. Malbouisson, B. Baseia, A note on “Generalized superposition of two squeezed states: generation and statistical properties”. Physica A: Statistical Mechanics and its Applications. 334(1), 139 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    A.T. Avelar, et al., Generation of superposed phase states via Raman interaction. J. Opt. B: Quantum Semiclassical Opt. 6(10), 383 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    A.T. Avelar, B. Baseia, J.M.C. Malbouisson, Scheme for direct measurement of the Wigner characteristic function of traveling fields. Opt. Commun. 259(2), 754 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    H.G. Baker, R.L. Singleton, Phys. Rev. A. 42, 10 (1990).  https://doi.org/10.1103/PhysRevA.42.10 ADSCrossRefGoogle Scholar
  49. 49.
    H. Lee, W.S. I’yi, Phys. Rev. A. 51, 982 (1995).  https://doi.org/10.1103/PhysRevA.51.982 ADSCrossRefGoogle Scholar
  50. 50.
    S. Longhi, Phys. Rev. Lett. 105, 013903 (2010).  https://doi.org/10.1103/PhysRevLett.105.013903 ADSCrossRefGoogle Scholar
  51. 51.
    J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990).  https://doi.org/10.1103/PhysRevLett.65.3385 ADSCrossRefGoogle Scholar
  52. 52.
    C. Valverde, B. Baseia, Quantum Inf. Process. 12, 2019 (2013).  https://doi.org/10.1007/s11128-012-0493-5 ADSCrossRefGoogle Scholar
  53. 53.
    A.T. Avelar, B. Baseia, J. Opt. B: Quantum Semiclass. Opt. 7, 198 (2005).  https://doi.org/10.1088/1464-4266/7/6/007 ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Z. Kim, B. Suri, V. Zaretskey, S. Novikov, K.D. Osborn, A. Mizel, F.C. Wellstood, B.S. Palmer, Phys. Rev. Lett. 106, 120501 (2011).  https://doi.org/10.1103/PhysRevLett.106.120501 ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Laboratório de Modelagem Molecular Aplicada e Simulação (LAMMAS)Universidade Estadual de GoiásAnápolisBrazil
  3. 3.Universidade PaulistaGoiâniaBrazil
  4. 4.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations