Quantum Coherence Behaviors for a Uniformly Accelerated Atom Immersed in Fluctuating Vacuum Electromagnetic Field with a Boundary

  • Zhiming HuangEmail author
  • Wei Zhang
Atomic Physics


We investigate the dynamics of quantum coherence (QC) for a uniformly accelerated atom interacting with fluctuating electromagnetic field subject to a conductor boundary. We firstly derive the master equation that the atom evolution obeys. We find that without boundary, QC declines under the effect of Unruh thermal bath and vacuum fluctuation. However, with a boundary, the degradation, fluctuation, and preservation of QC are closely related to boundary effect, atomic polarization, and acceleration. Furthermore, in the presence of a boundary, QC can effectively be protected under the influence of the vacuum fluctuation and Unruh thermal effect when the atom is transversely polarizable and near this boundary, and the presence of boundary gives us more freedom of controlling the QC behaviors.


Quantum coherence Unruh effect Dynamics Electromagnetic field 


Funding Information

Huang is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010). Zhang is supported by the Young Science and Technology Talent Growth Fund Project of Education Department of Guizhou Province of China (Qian Jiao He KY Zi[2018]426), the Major Special Fund Project of Research and Innovation for Qiannan Normal university for Nationalities of China (QNSY2018BS015), the Industrial Technology Foundation of Qiannan State of China (Qiannan Ke He Gong Zi (2017) 9 Hao) and the Scientific Research Foundation for High-level Talents of Qiannan Normal University for Nationalities (qnsyrc201716).


  1. 1.
    E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M.O. Scully, Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    L. Mandel, E. Wolf. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  4. 4.
    J.K. Asbóth, J. Calsamiglia, H. Ritsch, Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W. Vogel, J. Sperling, Unified quantification of nonclassicality and entanglement. Phys. Rev. A. 89, 052302 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mraz, J. Sperling, W. Vogel, B. Hage, Witnessing the degree of nonclassicality of light. Phys. Rev. A. 90, 033812 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, LutzNanoscale E., Heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Åberg, Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)CrossRefGoogle Scholar
  9. 9.
    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    V. Narasimhachar, G. Gour, Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M. Nielsen, I. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  13. 13.
    Z.M. Huang, H.Z. Situ, L.H. Zhao, Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus. 132, 152 (2017)CrossRefGoogle Scholar
  14. 14.
    Z.M. Huang, Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Z.M. Huang, H.Z. Situ, Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)CrossRefzbMATHGoogle Scholar
  16. 16.
    Z.M. Huang, Quantum correlation and coherence in the background of dilaton black hole. J. Phys. Soc. Jpn. 86, 124007 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Z.M. Huang, H.Z. Situ, Non-markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Z.M. Huang, H.Z. Situ, Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    B. Deveaud-Plédran, A. Quattropani, P. Schwendimann (eds.), Quantum coherence in solid state systems, Vol. 171 (IOS Press, Amsterdam, 2009). ISBN: 978-1-60750-039-1Google Scholar
  20. 20.
    C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, F. Nori, Witnessing Quantum Coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)CrossRefGoogle Scholar
  21. 21.
    G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Manc̆al, Y.-C. Cheng, R.E. Blakenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London). 446, 782 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London). 463, 644 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  24. 24.
    A.W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio, The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Cai, M.B. Plenio, Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Measuring quantum coherence with entanglementGoogle Scholar
  27. 27.
    Y. Yao, X. Xiao, L. Ge, C.P. Sun, Quantum coherence in multipartite systems. Phys. Rev. A. 92, 022112 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Xi, Y. Li, H. Fan, Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    J.J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    D. Girolami, Observable measure of Quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Zhang, H.W. Yu, Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary. Phys. Rev. A. 75, 012101 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    X.B. Liu, Z.H. Tian, J.C. Wang, J.L. Jing, Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Z.M. Huang, H.Z. Situ, Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Z.M. Huang, Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    S.J. Cheng, H.W. Yu, J.W. Hu, Entanglement dynamics for uniformly accelerated two-level atoms in the presence of a reflecting boundary. Phys. Rev. D. 98, 025001 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D. 14, 870 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    H. -P. Breuer, F. Petruccione. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar
  39. 39.
    V. Gorini, A. Kossakowski, E.C.G. Surdarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    N.D. Birrell, P.C.W. Davies. Quantum Fields Theory in Curved Space (Cambridge University Press, Cambridge, 1982)CrossRefzbMATHGoogle Scholar
  42. 42.
    Y. Jin, H.W. Yu, Electromagnetic shielding in quantum metrology. Phys. Rev. A. 91, 022120 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina
  2. 2.School of Mathematics and StatisticsQiannan Normal University for NationalitiesDuyunChina

Personalised recommendations