# Statistical Mesoscopic Hydro-thermodynamics: the Description of Kinetics and Hydrodynamics of Nonequilibrium Processes in Single Liquids

- 4 Downloads

## Abstract

Hydrodynamics, a term apparently introduced by Daniel Bernoulli (1700–1783) to comprise hydrostatic and hydraulics, has a long history with several theoretical approaches. Here, after a descriptive introduction, we present so-called mesoscopic hydro-thermodynamics, which is also referred to as higher order generalized hydrodynamics, built within the framework of a mechanical-statistical formalism. It consists of a description of the material and heat motion of fluids in terms of the corresponding densities and their associated fluxes of all orders. In this way, movements are characterized in terms of intermediate to short wavelengths and intermediate to high frequencies. The fluxes have associated Maxwell-like times, which play an important role in determining the appropriate contraction of the description (of the enormous set of fluxes of all orders) necessary to address the characterization of the motion in each experimental setup. This study is an extension of a preliminary article: Physical Review E **91**, 063011 (2015).

## Keywords

Statistical physics Hydrodynamics Single liquids## Notes

## References

- 1.L.M. Milne-Thompson, Theoretical hydrodynamics. (McMillan, London, UK, 1968; reprinted by Dover, New York, USA, 1996)Google Scholar
- 2.D. Jou, J. Casas-Vazquez, G. Lebon.
*Extended Irreversible Thermodynamics*(Springer, Berlin, 1993). Second edition 1996, Third edition 2001CrossRefzbMATHGoogle Scholar - 3.I. Müller, T. Ruggeri.
*Extended Thermodynamics*(Springer, Berlin, 1993)CrossRefzbMATHGoogle Scholar - 4.J.P. Boon, S. Yip.
*Molecular Hydrodynamics*(McGraw-Hill, New York, 1980). reprinted by Dover, New York, USA, 1991Google Scholar - 5.T. Dedeurwaerdere, J. Casas-Vázquez, D. Jou, G. Lebon, . Phys. Rev. E.
**53**(1), 498 (1996)ADSCrossRefGoogle Scholar - 6.R.A. Guyer, J.A. Krumhansl, . Phys. Rev.
**148**, 766 (1996)ADSCrossRefGoogle Scholar - 7.S. Hess, Z. Naturforsh, . A.
**32**, 678 (1977)Google Scholar - 8.D. Burnett, . Proc. London Math. Soc.
**40**, 382 (1935)MathSciNetGoogle Scholar - 9.D.N. Zubarev.
*Nonequilibrium Statistical Thermodynamics*(Plenum-Consultants Bureau, New York, 1974)Google Scholar - 10.D.N. Zubarev, . Fortschr. Phys./Prog. Phys.
**18**(3), 125–147 (1970)ADSCrossRefGoogle Scholar - 11.D.N. Zubarev, in
*Modern Methods of the Statistical Theory of Nonequilibrium Processes*. Reviews of Science and Technology: Modern Problems of Mathematics, vol. 15, (in Russian), pp. 131–226, ed. by R.B. Gramkreludze. (Izd. Nauka, Moscow, Russia, 1980) [English Transl. in: J. Soviet Math. 16, 1509], (1981)Google Scholar - 12.R. Luzzi, A.R. Vasconcellos, J.G. Ramos.
*Predictive Statistical Mechanics: a Non-Equilibrium Ensemble Formalism*(Kluwer, Dordrecht, 2002)CrossRefzbMATHGoogle Scholar - 13.R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . Rivista Nuovo Cimento.
**29**(2), 1–82 (2006)Google Scholar - 14.D.N. Zubarev, V. Morozov, G. Röpke, Vol. 1 and 2.
*Statistical Mechanics of Non Equilibrium Processes*(Academie Verlag-Wiley VCH, Berlin, 1996 and 1997)Google Scholar - 15.A.I Akhiezer, S.V. Peletminskii.
*Methods of Statistical Physics*(Pergamon, Oxford, 1981)Google Scholar - 16.J.A. McLennan, Vol. 5.
*Advances in Chemical Physics*(Academic, New York, 1963), pp. 261–317Google Scholar - 17.W.T. Grandy, Vol. 1 and 2.
*Principles of Statistical Mechanics*(Reidel, Dordrecht, 1987 and 1988)Google Scholar - 18.J.P. Dougherty, . Phil. Trans. Roy. Soc. (London) A.
**346**, 259 (1994)ADSGoogle Scholar - 19.R. Luzzi, A.R. Vasconcellos, . Fortsch. der Phys/Prog. Phys.
**38**(11), 887–922 (1990)ADSCrossRefGoogle Scholar - 20.R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . La Rivista del Nuovo Cimento.
**24**(3), 1–70 (2001)Google Scholar - 21.R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . La Rivista del Nuovo Cimento.
**29**(2), 1–82 (2006)Google Scholar - 22.R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . La Rivista del Nuovo Cimento.
**30**(3), 95 (2007)Google Scholar - 23.A. Hobson, . J. Chem. Phys.
**45**, 1352 (1966)ADSCrossRefGoogle Scholar - 24.A. Hobson, . Am. J. Phys.
**34**, 411 (1966)ADSCrossRefGoogle Scholar - 25.R. Luzzi, A.R. Vasconcellos, J.G. Ramos.
*Statistical Foundations of Irreversible Thermodynamics*(Teubner-Springer, Stuttgart, 2000)CrossRefzbMATHGoogle Scholar - 26.R. Luzzi, A.R. Vaconcellos, J.G. Ramos, C.G. Rodrigues, . Theor. Math. Phys.
**194**, 4–29 (2018)CrossRefGoogle Scholar - 27.B. Robertson, . Phys. Rev.
**144**(1), 151 (1996)ADSCrossRefGoogle Scholar - 28.B. Robertson, . Phys. Rev.
**160**, 175 (1967)ADSCrossRefGoogle Scholar - 29.L. Lauck, A.R. Vasconcellos, R. Luzzi, . Physica A.
**168**, 789 (1990)ADSCrossRefGoogle Scholar - 30.J.R. Madureira, A.R. Vasconcellos, R. Luzzi, L. Lauck, . Phys. Rev. E.
**57**, 3637 (1998)ADSCrossRefGoogle Scholar - 31.J.R. Madureira, A.R. Vasconcellos, R. Luzzi, J. Casas-Vazquez, D. Jou, . J. Chem. Phys.
**108**, 7568 (1998)ADSCrossRefGoogle Scholar - 32.J.G. Ramos, A.R. Vasconcellos, R. Luzzi, . Fortsch. der Phys/Prog. Phys.
**43**(4), 265 (1995)ADSCrossRefGoogle Scholar - 33.F.S. Vannucchi, A.R. Vasconcellos, R. Luzzi, . Int. J. Modern Phys. B.
**23**, 5283 (2009)ADSCrossRefGoogle Scholar - 34.C.A.B. Silva, J.G. Ramos, A.R. Vasconcellos, R. Luzzi, . J. Stat. Phys.
**143**(5), 1020–1034 (2011)ADSMathSciNetCrossRefGoogle Scholar - 35.H. Spohn, . Rev. Mod. Phys.
**52**(3), 569–615 (1980)ADSCrossRefGoogle Scholar - 36.Y.L. Klimontovich, in
*A Unified Approach to Kinetic Description of Processes in Active Systems*. Statistical Theory of Open Systems, Vol. 1 (Kluwer, Dordrecht, 1995)Google Scholar - 37.H. Grad, in
*Principles of the Kinetic Theory of Gases*. Handbuch Der Physik, ed. by S. Flügge, Vol. XII (Springer, Berlin, 1958), pp. 205–294Google Scholar - 38.C.A.B. Silva, J.G. Ramos, A.R. Vasconcellos, R. Luzzi, arXiv:1210.7280
- 39.C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, . Eur. Phys. J. B.
**86**, 200 (2013)ADSCrossRefGoogle Scholar - 40.C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, . Phys. E.
**60**, 50 (2014)CrossRefGoogle Scholar - 41.A.R.B. Castro, A.R. Vasconcellos, C.A.B. Silva, R. Luzzi, . AIP Adv.
**3**, 072106 (2013)ADSCrossRefGoogle Scholar - 42.A.R.B. Castro, A.R. Vasconcellos, R. Luzzi, . Rev. Scient. Inst.
**81**(7), 073102 (2010)ADSCrossRefGoogle Scholar - 43.A.R. Vasconcellos, A.A.P. Silva, R. Luzzi, D. Jou, J. Casas-Vazquez, . Phys. Rev. E.
**88**, 042110 (2013)ADSCrossRefGoogle Scholar - 44.D.N. Zubarev, M.Y. Novikov, . Theor. Math. Phys.
**9**, 480 (1975)Google Scholar - 45.R. Courant, D. Hilbert.
*Methods of Mathematical Physics*(Wiley-Interscience, New York, 1953)zbMATHGoogle Scholar - 46.C.G. Rodrigues, C.A.B. Silva, J.G. Ramos, R. Luzzi, . Phys. Rev. E.
**95**, 022104 (2017)ADSCrossRefGoogle Scholar - 47.J.G. Ramos, C.A.B. Silva, C.G. Rodrigues, R. Luzzi, Criterion for truncation of description in higher-order hydrodynamics, future publicationGoogle Scholar
- 48.J.C. Maxwell, . Phil. Trans. Roy. Soc. (London).
**157**, 49 (1867)ADSCrossRefGoogle Scholar - 49.R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, . Physica A.
**234**(3-4), 669–714 (1997)ADSCrossRefGoogle Scholar - 50.R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, . J. Chem. Phys.
**107**, 7383 (1997)ADSCrossRefGoogle Scholar - 51.S.P. Heims, E.T. Jaynes, . Rev. Mod. Phys.
**34**(2), 143 (1962)ADSCrossRefGoogle Scholar - 52.N.S. Krylov.
*Works on the Foundations of Statistical Mechanics, with a Introduction by A.B. Migdal and V.A. Fock*(Princeton University Press, Princeton, 1979)Google Scholar