Advertisement

Statistical Mesoscopic Hydro-thermodynamics: the Description of Kinetics and Hydrodynamics of Nonequilibrium Processes in Single Liquids

  • José G. Ramos
  • Clóves G. RodriguesEmail author
  • Carlos A. B. Silva
  • Roberto Luzzi
Statistical
  • 4 Downloads

Abstract

Hydrodynamics, a term apparently introduced by Daniel Bernoulli (1700–1783) to comprise hydrostatic and hydraulics, has a long history with several theoretical approaches. Here, after a descriptive introduction, we present so-called mesoscopic hydro-thermodynamics, which is also referred to as higher order generalized hydrodynamics, built within the framework of a mechanical-statistical formalism. It consists of a description of the material and heat motion of fluids in terms of the corresponding densities and their associated fluxes of all orders. In this way, movements are characterized in terms of intermediate to short wavelengths and intermediate to high frequencies. The fluxes have associated Maxwell-like times, which play an important role in determining the appropriate contraction of the description (of the enormous set of fluxes of all orders) necessary to address the characterization of the motion in each experimental setup. This study is an extension of a preliminary article: Physical Review E 91, 063011 (2015).

Keywords

Statistical physics Hydrodynamics Single liquids 

Notes

References

  1. 1.
    L.M. Milne-Thompson, Theoretical hydrodynamics. (McMillan, London, UK, 1968; reprinted by Dover, New York, USA, 1996)Google Scholar
  2. 2.
    D. Jou, J. Casas-Vazquez, G. Lebon. Extended Irreversible Thermodynamics (Springer, Berlin, 1993). Second edition 1996, Third edition 2001CrossRefzbMATHGoogle Scholar
  3. 3.
    I. Müller, T. Ruggeri. Extended Thermodynamics (Springer, Berlin, 1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    J.P. Boon, S. Yip. Molecular Hydrodynamics (McGraw-Hill, New York, 1980). reprinted by Dover, New York, USA, 1991Google Scholar
  5. 5.
    T. Dedeurwaerdere, J. Casas-Vázquez, D. Jou, G. Lebon, . Phys. Rev. E. 53(1), 498 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Guyer, J.A. Krumhansl, . Phys. Rev. 148, 766 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    S. Hess, Z. Naturforsh, . A. 32, 678 (1977)Google Scholar
  8. 8.
    D. Burnett, . Proc. London Math. Soc. 40, 382 (1935)MathSciNetGoogle Scholar
  9. 9.
    D.N. Zubarev. Nonequilibrium Statistical Thermodynamics (Plenum-Consultants Bureau, New York, 1974)Google Scholar
  10. 10.
    D.N. Zubarev, . Fortschr. Phys./Prog. Phys. 18(3), 125–147 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    D.N. Zubarev, in Modern Methods of the Statistical Theory of Nonequilibrium Processes. Reviews of Science and Technology: Modern Problems of Mathematics, vol. 15, (in Russian), pp. 131–226, ed. by R.B. Gramkreludze. (Izd. Nauka, Moscow, Russia, 1980) [English Transl. in: J. Soviet Math. 16, 1509], (1981)Google Scholar
  12. 12.
    R. Luzzi, A.R. Vasconcellos, J.G. Ramos. Predictive Statistical Mechanics: a Non-Equilibrium Ensemble Formalism (Kluwer, Dordrecht, 2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . Rivista Nuovo Cimento. 29(2), 1–82 (2006)Google Scholar
  14. 14.
    D.N. Zubarev, V. Morozov, G. Röpke, Vol. 1 and 2. Statistical Mechanics of Non Equilibrium Processes (Academie Verlag-Wiley VCH, Berlin, 1996 and 1997)Google Scholar
  15. 15.
    A.I Akhiezer, S.V. Peletminskii. Methods of Statistical Physics (Pergamon, Oxford, 1981)Google Scholar
  16. 16.
    J.A. McLennan, Vol. 5. Advances in Chemical Physics (Academic, New York, 1963), pp. 261–317Google Scholar
  17. 17.
    W.T. Grandy, Vol. 1 and 2. Principles of Statistical Mechanics (Reidel, Dordrecht, 1987 and 1988)Google Scholar
  18. 18.
    J.P. Dougherty, . Phil. Trans. Roy. Soc. (London) A. 346, 259 (1994)ADSGoogle Scholar
  19. 19.
    R. Luzzi, A.R. Vasconcellos, . Fortsch. der Phys/Prog. Phys. 38(11), 887–922 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . La Rivista del Nuovo Cimento. 24(3), 1–70 (2001)Google Scholar
  21. 21.
    R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . La Rivista del Nuovo Cimento. 29(2), 1–82 (2006)Google Scholar
  22. 22.
    R. Luzzi, A.R. Vasconcellos, J.G. Ramos, . La Rivista del Nuovo Cimento. 30(3), 95 (2007)Google Scholar
  23. 23.
    A. Hobson, . J. Chem. Phys. 45, 1352 (1966)ADSCrossRefGoogle Scholar
  24. 24.
    A. Hobson, . Am. J. Phys. 34, 411 (1966)ADSCrossRefGoogle Scholar
  25. 25.
    R. Luzzi, A.R. Vasconcellos, J.G. Ramos. Statistical Foundations of Irreversible Thermodynamics (Teubner-Springer, Stuttgart, 2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    R. Luzzi, A.R. Vaconcellos, J.G. Ramos, C.G. Rodrigues, . Theor. Math. Phys. 194, 4–29 (2018)CrossRefGoogle Scholar
  27. 27.
    B. Robertson, . Phys. Rev. 144(1), 151 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    B. Robertson, . Phys. Rev. 160, 175 (1967)ADSCrossRefGoogle Scholar
  29. 29.
    L. Lauck, A.R. Vasconcellos, R. Luzzi, . Physica A. 168, 789 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    J.R. Madureira, A.R. Vasconcellos, R. Luzzi, L. Lauck, . Phys. Rev. E. 57, 3637 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J.R. Madureira, A.R. Vasconcellos, R. Luzzi, J. Casas-Vazquez, D. Jou, . J. Chem. Phys. 108, 7568 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    J.G. Ramos, A.R. Vasconcellos, R. Luzzi, . Fortsch. der Phys/Prog. Phys. 43(4), 265 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    F.S. Vannucchi, A.R. Vasconcellos, R. Luzzi, . Int. J. Modern Phys. B. 23, 5283 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    C.A.B. Silva, J.G. Ramos, A.R. Vasconcellos, R. Luzzi, . J. Stat. Phys. 143(5), 1020–1034 (2011)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Spohn, . Rev. Mod. Phys. 52(3), 569–615 (1980)ADSCrossRefGoogle Scholar
  36. 36.
    Y.L. Klimontovich, in A Unified Approach to Kinetic Description of Processes in Active Systems. Statistical Theory of Open Systems, Vol. 1 (Kluwer, Dordrecht, 1995)Google Scholar
  37. 37.
    H. Grad, in Principles of the Kinetic Theory of Gases. Handbuch Der Physik, ed. by S. Flügge, Vol. XII (Springer, Berlin, 1958), pp. 205–294Google Scholar
  38. 38.
    C.A.B. Silva, J.G. Ramos, A.R. Vasconcellos, R. Luzzi, arXiv:1210.7280
  39. 39.
    C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, . Eur. Phys. J. B. 86, 200 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, . Phys. E. 60, 50 (2014)CrossRefGoogle Scholar
  41. 41.
    A.R.B. Castro, A.R. Vasconcellos, C.A.B. Silva, R. Luzzi, . AIP Adv. 3, 072106 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    A.R.B. Castro, A.R. Vasconcellos, R. Luzzi, . Rev. Scient. Inst. 81(7), 073102 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    A.R. Vasconcellos, A.A.P. Silva, R. Luzzi, D. Jou, J. Casas-Vazquez, . Phys. Rev. E. 88, 042110 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    D.N. Zubarev, M.Y. Novikov, . Theor. Math. Phys. 9, 480 (1975)Google Scholar
  45. 45.
    R. Courant, D. Hilbert. Methods of Mathematical Physics (Wiley-Interscience, New York, 1953)zbMATHGoogle Scholar
  46. 46.
    C.G. Rodrigues, C.A.B. Silva, J.G. Ramos, R. Luzzi, . Phys. Rev. E. 95, 022104 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    J.G. Ramos, C.A.B. Silva, C.G. Rodrigues, R. Luzzi, Criterion for truncation of description in higher-order hydrodynamics, future publicationGoogle Scholar
  48. 48.
    J.C. Maxwell, . Phil. Trans. Roy. Soc. (London). 157, 49 (1867)ADSCrossRefGoogle Scholar
  49. 49.
    R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, . Physica A. 234(3-4), 669–714 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, . J. Chem. Phys. 107, 7383 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    S.P. Heims, E.T. Jaynes, . Rev. Mod. Phys. 34(2), 143 (1962)ADSCrossRefGoogle Scholar
  52. 52.
    N.S. Krylov. Works on the Foundations of Statistical Mechanics, with a Introduction by A.B. Migdal and V.A. Fock (Princeton University Press, Princeton, 1979)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics DepartmentInstitute of Physics “Gleb Wataghin”, State University of Campinas-UnicampCampinasBrazil
  2. 2.School of Exact Sciences and ComputingPontifical Catholic University of GoiásGoiâniaBrazil
  3. 3.Departamento de FísicaInstituto Tecnológico de AeronáuticaSão José dos CamposBrazil

Personalised recommendations