Advertisement

A New Algorithm to Study the Critical Behavior of Topological Phase Transitions

  • B. V. CostaEmail author
  • L. A. S. Mól
  • J. C. S. Rocha
Statistical
  • 27 Downloads

Abstract

Topological phase transitions such as the Berezinskii-Kosterlitz-Thouless (BKT) transition are difficult to characterize due to the difficulty in defining an appropriate order parameter or to unravel its critical properties. In this paper, we discuss the application of a newly introduced numerical algorithm that was inspired by the Fisher zeros of the partition function and is based on the partial knowledge of the zeros of the energy probability distribution (EPD zeros). This iterative method has proven to be quite general, furnishing the transition temperature with great precision and a relatively low computational effort. Since it does not need the a priori knowledge of any order parameter it provides an unbiased estimative of the transition temperature being convenient to the study of this kind of phase transition. Therefore, we applied the EPD zeros approach to the 2D XY model, which is well known for showing a BKT transition, in order to demonstrate its effectivity in the study of the BKT transition. Our results are consistent with the real and imaginary parts of the pseudo-transition temperature, T(L), having a different asymptotic behavior, which suggests a way to characterize a BKT like transition.

Keywords

Partition function zeros Topological phase transition XY model Monte Carlo simulations Replica-exchange Wang-Landau 

Notes

Funding Information

The authors thank CNPq (Grants 303480/2017-3, 306457/2016-4) and FAPEMIG (APQ-03183-16) for the partial financial support.

References

  1. 1.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966).  https://doi.org/10.1103/PhysRevLett.17.1133 ADSCrossRefGoogle Scholar
  2. 2.
    40 Years History of Berezinskii-Kosterlitz-Thouless Theory, edited by Jorge V. José (World Scientific) (2013)Google Scholar
  3. 3.
    P. Minnhagen, The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Modern Phys. 59, 1001 (1987).  https://doi.org/10.1103/RevModPhys.59.1001 ADSCrossRefGoogle Scholar
  4. 4.
    V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional Systems having a continuous symmetry group I. Classical Systems. Sov. Phys. JETP. 32, 493 (1971)ADSMathSciNetGoogle Scholar
  5. 5.
    J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    L. Pitaevskii, S. Stringari, Bose–Einstein condensation and superfluidity, international series of monographs on physics, Oxford University Press (2016)Google Scholar
  7. 7.
    R.J. Fletcher, Bose-Einstein condensation and superfluidity in two dimensions, Dissertation submitted for the degree of Doctor of Philosophy, Trinity College, University of Cambridge (2015)Google Scholar
  8. 8.
    K. Gretchen, Campbell, Superfluidity goes 2D. Nat. Phys. 8, 643 (2012).  https://doi.org/10.1038/nphys2395 CrossRefGoogle Scholar
  9. 9.
    D.C. Mattis, Statistical mechanics made simple : a guide for students and researchers. World Scientific Publishing (2003)Google Scholar
  10. 10.
    J.C.S. Rocha, B.V. Costa, L.A.S. Mól, Using zeros of the canonical partition function map to detect signatures of a Berezinskii-Kosterlitz-Thouless transition. Comput. Phys. Commun. 209, 88–91 (2016).  https://doi.org/10.1016/j.cpc.2016.08.016 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T.P. Figueiredo, J.C.S. Rocha, B.V. Costa, Topological phase transition in the two-dimensional anisotropic Heisenberg model: a study using the replica exchange wang-landau sampling. Physica A-Statistical Mechanics and its Applications. 488, 121 (2017).  https://doi.org/10.1016/j.physa.2017.07.010 ADSCrossRefGoogle Scholar
  12. 12.
    R. Kenna, A.C. Irving, . The Kosterlitz-Thouless universality class. 485, 583 (1997).  https://doi.org/10.1016/S0550-3213(96)00642-6 Google Scholar
  13. 13.
    H.G. Evertz, D.P. Landau, Critical dynamics in the 2D classical XY-model: a spin dynamics study. Phys. Rev. B. 54, 12302 (1996).  https://doi.org/10.1103/PhysRevB.54.12302 ADSCrossRefGoogle Scholar
  14. 14.
    B.V. Costa, P.Z. Coura, S.A. Leonel, Berezinskii–kosterlitz–thouless transition close to the percolation threshold. Phys. Lett. A. 377, 1239 (2013).  https://doi.org/10.1016/j.physleta.2013.03.030 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    M.E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998).  https://doi.org/10.1103/RevModPhys.70.653 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    C.N. Yang, T.D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation. Phys. Rev. 87, 404–409 (1952).  https://doi.org/10.1103/PhysRev.87.404 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M.E. Fisher, in . Lectures in theoretical physics: Volume VII C - statistical physics, weak interactions, field theory : lectures delivered at the summer institute for theoretical physics, University of Colorado, Boulder, 1964, No. v. 7, University of Colorado Press, Boulder, ed. by W. Brittin, (1965)Google Scholar
  18. 18.
    B.V. Costa, L.A.S. Mól, J.C.S. Rocha, Energy probability distribution zeros: a route to study phase transitions. Comput. Phys. Commun. 216, 77 (2017).  https://doi.org/10.1016/j.cpc.2017.03.003 ADSCrossRefGoogle Scholar
  19. 19.
    B.V. Costa, L.A.S. Mól, J.C.S. Rocha, The zeros of the energy probability distribution - a new way to study phase transitions. J. Phys. Conf. Ser. 921, 012004 (2017).  https://doi.org/10.1088/1742-6596/921/1/012004 CrossRefGoogle Scholar
  20. 20.
    T. Vogel, Y.W. Li, T. Wüst, D.P. Landau, Generic, hierarchical framework for massively parallel wang-landau sampling. Phys. Rev. Lett. 110, 210603 (2013).  https://doi.org/10.1103/PhysRevLett.110.210603 ADSCrossRefGoogle Scholar
  21. 21.
    T. Vogel, Y.W. Li, T. Wüst, D.P. Landau, Scalable replica-exchange framework for Wang-Landau sampling. Phys. Rev. E. 90, 023302 (2014).  https://doi.org/10.1103/PhysRevE.90.023302 ADSCrossRefGoogle Scholar
  22. 22.
    F. Wang, D.P. Landau, Efficient, Multiple-Range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001).  https://doi.org/10.1103/PhysRevLett.86.2050 ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Ferrenberg, R.H. Swendsen, New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635–2638 (1988).  https://doi.org/10.1103/PhysRevLett.61.2635 ADSCrossRefGoogle Scholar
  24. 24.
    A.M. Ferrenberg, R.H. Swendsen, Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198 (1989).  https://doi.org/10.1103/PhysRevLett.63.1195 ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Laboratório de Simulacão, Departamento de Física, ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Física, ICEBUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations