History and National Initiatives of Carbon Nanotube and Graphene Research in Brazil

  • Marcos A. Pimenta
  • Laura A. Geracitano
  • Solange B. FaganEmail author
Atomic Physics


In this article, we first introduce and discuss the fundamental science of carbon nanomaterials (especially nanotubes and graphene) and the different technological applications from using these materials. We then discuss the first works of Brazilians scientists, done in collaboration with scientists of other countries and, in particular, the role of Prof. M. S. Dresselhaus from MIT, US, in the development of the nanocarbon science in Brazil. We briefly discuss some experimental and theoretical works about nanotubes and graphene done in Brazil in the late 1990s and early 2000s, and the formation of the first Brazilian network on carbon nanotubes in 2005. We present the activities of the National Institute of Science and Technology (INCT) in Carbon Nanomaterials (CN) created in 2009. A scientometric analysis is used to describe the INCT-CN network formation. Finally, we present the Center of Technology in Nanomaterials (CTNano) installed at UFMG, where pilot plants were developed to produce graphene and nanotubes at large scales, and the work being done at the center in collaboration with companies aiming to solve specific technological problems and to create bridges between the academic and the industrial sectors.


Graphene Carbon nanotubes Nanotechnology Scientometric Analysis 



Laura A. Geracitano is Postdoctoral Fellowship CAPES/BRASIL (88887.169785/2018-00).


This study is financially supported by the CNPq and FAPEMIG for the INCT in Carbon Nanomaterials.


  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, 1st edn. (Imperial College Press, London, 1998), p. 259CrossRefGoogle Scholar
  5. 5.
    P. Ludvig, J.M. Calixto, L.O. Ladeira, I.C.P. Gaspar, Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Materials 4, 575–584 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    W.A. de Heer, J. Bonard, K. Fauth, A. Chatelain, L. Forro, D. Ugarte, Electron field emitters based on carbon nanotube films. Adv. Mater. 9, 87–89 (1997)CrossRefGoogle Scholar
  8. 8.
    D. Ugarte, A. Châtelain, W.A. de Heer, Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Pimenta, A. Marucci, S.D.M. Brown, M.J. Matthews, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Resonant Raman effect in single-wall carbon nanotubes, J. Mater. Res. 13, 2396 (1998)Google Scholar
  11. 11.
    M.A. Pimenta, A. Marucci, S. Empedocles, M. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Raman modes of metallic carbon nanotubes. Phys. Rev. B Condens. Matter 58, R16016–R16019 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Origin of dispersive effect of the Raman D-band in carbon materials, Phys. Rev. B Condens. Matter 59, R6585 (1999)Google Scholar
  13. 13.
    P. Corio, S.D.M. Brown, A. Marucci, M.A. Pimenta, K. Kneipp, G. Dresselhaus, M.S. Dresselhaus, Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces. Phys. Rev. B Condens. Matter 61, 13202–13211 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    A.G. Souza Filho, A. Jorio, A.K. Swan, M.S. Ünlü, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Electronic transition energyEiifor an isolated(n,m)single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Phys. Rev. B: Condens. Matter 63, 241404 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, M.S. Dresselhaus, R.S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D.J. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Rao, M.A. Pimenta, A. Jorio, M.S.S. Dantas, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 84(1820), 1820–1823 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    C. Fantini, M.A. Pimenta, M.S.S. Dantas, D. Ugarte, A.M. Rao, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Micro-Raman investigation of aligned single-wall carbon nanotubes. Phys. Rev. B Rapid Comm. 63, 161405 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Optical transition energies for carbon nanotubes from resonant raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93, 147406 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    C. Fantini, A. Jorio, M. Souza, L.O. Ladeira, A.G. Souza Filho, R. Saito, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 087401 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    J.G. Huber, J.G.V. Romero, J.D. Spivey, C.A. Luengo, A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis. Quím. Nova 24, 898–900 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Ugarte, M.C. Schnitzler, A.J. Zarbin, M.M. Oliveira, Chem. Phys. Lett. 381, 541 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A.G. Souza Filho, S.G. Chou, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, L. An, J. Liu, A.K. Swan, M.S. Ünlü, B.B. Goldberg, A. Jorio, A. Grüneis, R. Saito, Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes. Phys. Rev. B 69(11), 115428 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    M.S.C. Mazzoni, H. Chacham, P. Ordejon, D. Sanchez-Portal, J.M. Soler, E. Artacho, Phys. Rev. B Condens. Matter 60, 2208 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    M.S.C. Mazzoni, H. Chacham, Atomic restructuring and localized electron states in a bent carbon nanotube: A first-principles study. Phys. Rev. B Condens. Matter 61, 7312–7315 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    M.S.C. Mazzoni, H. Chacham, Bandgap closure of a flattened semiconductor carbon nanotube: a first-principles study. Appl. Phys. Lett. 76, 1561–1563 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    S.B. Fagan, R. Mota, A.J.R. Da Silva, A. Fazzio, Substitutional Si doping in deformed carbon nanotubes. Nano Lett. 4, 975–977 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    L.B. da Silva, S.B. Fagan, R. Mota, Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules. Nano Lett. 4, 65–67 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B Condens. Matter 2054141, 67 (2003)Google Scholar
  30. 30.
    S.B. Fagan, L.B. da Silva, R. Mota, Ab initio study of radial deformation plus vacancy on carbon nanotubes: energetics and electronic properties. Nano Lett. 3, 289–291 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B Condens. Matter 64, 854131 (2001)CrossRefGoogle Scholar
  32. 32.
    S.B. Fagan, R. Mota, R. Baierle, A.J.R. da Silva, A. Fazzio, Energetics and structural properties of adsorbed atoms and molecules on silicon-doped carbon nanotubes. Mater. Charact. 50, 183–187 (2003)CrossRefGoogle Scholar
  33. 33.
    S.B. Fagan, R.J. Baierle, R. Mota, A.J.R. da Silva, A. Fazzio, Ab initiocalculations for a hypothetical material: silicon nanotubes. Phys. Rev. B Condens. Matter 61, 9994–9996 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B Condens. Matter 8, 854131 (2001)Google Scholar
  35. 35.
    E.B. Barros, A.G.S. Filho, V. Lemos, S.B. Fagan, C.A. Luengo, J.G. Huber, Charge transfer effects in acid treated single-wall carbon nanotubes. Carbon 43, 2495–2500 (2005)CrossRefGoogle Scholar
  36. 36.
    S.B. Fagan, A.G.S. Filho, J.M. Filho, P. Corio, M.S. Dresselhaus, Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chem. Phys. Lett. 406, 54–59 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    S.B. Fagan, A.G. Souza, J.O.G. Lima, J. Mendes, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, 1,2-Dichlorobenzene interacting with carbon nanotubes. Nano Lett. 4, 1285–1288 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    A.G. Souza Filho et al., Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology 14, 1130–1139 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    D. Grimm, P. Venezuela, A. Latgé, Thermal and mechanical stability of Y-shaped carbon nanotubes. Phys. Rev. B Condens. Matter 71, 155425 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    A. Latgé, D. Grimm, P. Venezuela, Y-shaped carbon nanotubes: structural stability and transport properties. J. Mol. Catal. A Chem. 228, 125–130 (2005)CrossRefGoogle Scholar
  41. 41.
    P. Orellana, M.L. de Guevara, M. Pacheco, A. Latge, Phys. Rev. B 68, 53211 (2003)CrossRefGoogle Scholar
  42. 42.
    C. Rocha, T. Dargam, A. Latgé, Phys. Rev. B 65, 5431 (2002)CrossRefGoogle Scholar
  43. 43.
    P. Tangney, R.B. Capaz, C.D. Spataru, M.L. Cohen, S.G. Louie, Structural transformations of carbon nanotubes under hydrostatic pressure. Nano Lett. 5, 2268–2273 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, S.G. Louie, Temperature dependence of the band gap of semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 036801 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, S.G. Louie, Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes. Phys. Status Solidi (B) 241, 3352–3359 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    M. Verissimo-Alves, B. Koiller, H. Chacham, R.B. Capaz, Electromechanical effects in carbon nanotubes: ab initio and analytical tight-binding calculations. Phys. Rev. B Condens. Matter 67, 161401 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    V.R. Coluci, S.B. Legoas, M.A.M. de Aguiar, D.S. Galvão, Chaotic signature in the motion of coupled carbon nanotube oscillators. Nanotechnology 16, 583–589 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    K.S. Troche, V.R. Coluci, S.F. Braga, D.D. Chinellato, F. Sato, S.B. Legoas, R. Rurali, D.S. Galvao, Prediction of ordered phases of encapsulated C60, C70, and C78 inside carbon nanotubes. Nano Lett. 5, 349–355 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galvao, R.H. Baughman, Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S. Dantas, D.S. Galvao, Gigahertz nanomechanical oscillators based on carbon nanotubes. Nanotechnology 15, S184–S189 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvão, R.H. Baughman, New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15, S142–S149 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, D.S. Galvao, Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90, 055504/1 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Kopelevich, R.R. da Silva, J.H.S. Torres, S. Moehlecke, M.B. Maple, Phys. C: Supercond. 408, 77 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Kopelevich, J.C.M. Pantoja, J.C. Medina, R.R. da Silva, F. Mrowka, P. Esquinazi, Anomalous Hall effect in graphite. Phys. Lett. A 355, 233–236 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    L.G. Cançado, M.A. Pimenta, R. Saito, A. Jorio, L.O. Ladeira, A. Grueneis, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B Condens. Matter 66, 035415 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    L.G. Cançado, M.A. Pimenta, A. Jorio, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, Phys. Rev. Lett. 93, 047403 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta, App. Phys. Lett. 88, 163106 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B Condens. Matter 76, 201401 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    C. Chen, Information Visualization: Beyond the Horizon, 2d edn. (Springer, Berlin, 2004), p. 316Google Scholar
  62. 62.
    C. Chen, Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. 101, 5303–5310 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    C. Chen, CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57, 359–377 (2006)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Departamento de Física, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Área de Ciências Tecnológicas, Universidade Franciscana, UFNSanta MariaBrazil

Personalised recommendations