Brazilian Journal of Physics

, Volume 48, Issue 6, pp 560–570 | Cite as

Structural and Nonlinear Optical Characteristics of In Vitro Glycation of Human Low-Density Lipoprotein, as a Function of Time

  • Ana Paula de Queiroz Mello
  • Ghadeer Albattarni
  • Daniel Humberto Garcia Espinosa
  • Dennys Reis
  • Antonio Martins Figueiredo NetoEmail author
Condensed Matter


Modified low-density lipoprotein (LDL) is a well-known risk marker for diabetes and cardiovascular disease. In vitro and in vivo studies have shown that native LDL particles, when modified by oxidation and/or glycation processes, become proatherogenic. Other studies have shown that high LDL concentrations also contribute to atherogenic diseases. In the present in vitro study, we investigate structural characteristics, linear and nonlinear optical properties of LDL particles modified by glycation, compared to modified-control and non-modified LDL (LDLnat). LDL particles were isolated from normolipidemic individuals and aliquots were incubated in PBS (LDLcontrol) and glycated (LDLglyc) with glycolaldehyde (GAD) from 2 to 6 days. The nonlinear optical Z-Scan experiments indicate that GAD modifies the optical properties of the LDL. These results indicate the application of a nonlinear optical technique as a tool to investigate the characteristics of LDL particles, in particular when modifications are induced in the particles by glycation.


LDL Structure Glycation Z-scan technique 



From Brazil, we acknowledge the National Council for Scientific and Technological Development (CNPq – 465259/2014-6), the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Institute of Science and Technology Complex Fluids (INCT-FCx), and the São Paulo Research Foundation (FAPESP – 2014/50983-3 and 2016/24531-3).

Authors Contributions

A.P.Q.M. wrote the manuscript and made the LDL glycation; G.A. made the Z-Scan experiment; D.H.G.E. did the linear optical experiment and analyzed the Z-Scan data; D.R. did the X-ray experiment and analysis; A.M.F.N. designed the experiment, wrote and revised the manuscript, and researched data. The guarantor is Prof. Dr. Antonio Martins Figueiredo Neto.

Compliance with Ethical Standards

The project was approved by the ethics committee of the university and all participants provided written informed consent prior to study initiation.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    International Diabetes Federation. IDF Diabetes Atlas Seventh Edition 2015, Online version of IDF Diabetes Atlas:
  2. 2.
    T. Filippatos, V. Tsimihodimos, E. Pappa, M. Elisaf, Curr. Vasc. Pharmacol. 15, 566 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Neviere, Y. Yu, L. Wang, F. Tessier, E. Boulanger, Glycoconj. J. 33, 607 (2016)CrossRefGoogle Scholar
  4. 4.
    A.P.Q. Mello, I.T. da Silva, D.S. Abdalla, N.R.T. Damasceno, Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215, 257–265 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Nagai, K. Matsumoto, X. Ling, H. Suzuki, T. Araki, S. Horiuchi, Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49, 1714–1723 (2000)CrossRefGoogle Scholar
  6. 6.
    A. Zmysłowski, A. Szterk, Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis. 16, 188 (2017)CrossRefGoogle Scholar
  7. 7.
    C.M. Parrinello, E. Selvin, Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Curr. Diab. Rep. 14, 548 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Yoshida, R. Kisugi, Mechanisms of LDL oxidation. Clin. Chim. Acta 411, 1875–1882 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Brownlee, Nature 414, 813 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    M.F. Lopes-Virella, K.J. Hunt, N.L. Baker, J. Lachin, D.M. Natah, G. Virella, Diabetes 60, 582 (2011)CrossRefGoogle Scholar
  11. 11.
    N.N. Younis, H. Soran, P. Pemberton, V. Charlton-Menys, M.M. Elseweidy, P.N. Durrington, Small dense LDL is more susceptible to glycation than more buoyant LDL in Type 2 diabetes. Clin. Sci. 124, 343–349 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Ahmad, M.S. Khan, F. Akhter, M.S. Khan, A. Khan, J.M. Ashraf, R.P. Pandey, U. Shahab, Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology 24, 979–990 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Aldini, G. Vistoli, M. Stefek, N. Chondrogianni, T. Grune, J. Sereikaite, I. Sadowska-Bartosz, G. Bartosz, Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 47, 93–137 (2013)CrossRefGoogle Scholar
  14. 14.
    A.J. Jenkins, J.D. Best, R.L. Klein, T.J. Lyons, Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab. Res. Rev. 20, 349–368 (2004)CrossRefGoogle Scholar
  15. 15.
    G. Sobal, J. Menzel, H. Sinzinger, Prostaglandins, leukotrienes and essential fatty acids. 63, 177 (2000)Google Scholar
  16. 16.
    J.W. Baynes, S.R. Thorpe, Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28, 1708–1716 (2000)CrossRefGoogle Scholar
  17. 17.
    G.H. Tomkin, D. Owens, Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab. Res. Rev. 17, 27–43 (2001)CrossRefGoogle Scholar
  18. 18.
    Z. Géhl, E. Bakondi, M.D. Resch, C. Hegeds, K. Kovács, P. Lakatos, A. Szabó, Z. Nagy, L. Virág, Redox Biol 9, 100 (2016)CrossRefGoogle Scholar
  19. 19.
    A.N. Orekhov, Y.V. Bobryshev, I.A. Sobenin, A.A. Melnichenko, D.A. Chistiakov, Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int. J. Mol. Sci. 15, 12807–12841 (2014)CrossRefGoogle Scholar
  20. 20.
    C.P. Hodgkinson, R.C. Laxton, K. Patel, S. Ye, Advanced glycation end-product of low density lipoprotein activates the Toll-Like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 2275–2281 (2008)CrossRefGoogle Scholar
  21. 21.
    J.N. Adams, S.E. Martelle, L.M. Raffield, B.I. Freedman, C.D. Langefeld, F.C. Hsu, J.A. Maldjian, J.D. Williamson, C.E. Hugenschmidt, J.J. Carr, A.J. Cox, D.W. Bowden, Analysis of advanced glycation end products in the DHS Mind Study. J. Diabetes Complicat. 30, 262–268 (2016)CrossRefGoogle Scholar
  22. 22.
    D.F. Meyer, A.S. Nealis, C.H. MacPhee, P.H.E. Groot, K.E. Suckling, K.R. Bruckdorfer, S.J. Perkins, Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu2+-induced oxidation in relation to changes in lipid composition. Biochem. J. 319, 217–227 (1996)CrossRefGoogle Scholar
  23. 23.
    C.L.P. Oliveira, P.R. Santos, A.M. Monteiro, A.M. Figueiredo Neto, Effect of oxidation on the structure of human low- and high-density lipoproteins. Biophys. J. 106, 2595–2605 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S.L. Gómez, F.L.S. Cuppo, A.M. Figueiredo Neto, T. Kosa, M. Muramatsu, R.J. Horowicz, Rev. Phys. 59, 3059 (1999)Google Scholar
  25. 25.
    S. Alves, A.M. Figueiredo Neto, Advances in the non-linear optical investigation of lyotropic-like low-density human lipoproteins in the native and oxidised states. Liq. Cryst. 41, 465–470 (2014)CrossRefGoogle Scholar
  26. 26.
    P.R. Santos, T.C. Genaro-Mattos, A.M. Monteiro, S. Miyamoto, A.M. Figueiredo Neto, J. Biomed. Opt. 17, 105003 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A.M. Monteiro, M.A.N. Jardini, V. Giampaoli, S. Alves, A.M. Figueiredo Neto, M. Gidlund, Measurement of the nonlinear optical response of low-density lipoprotein solutions from patients with periodontitis before and after periodontal treatment: evaluation of cardiovascular risk markers. J. Biomed. Opt. 17, 115004 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Monteiro, M.A. Jardini, S. Alves, V. Giampaoli, E.C. Aubin, A.M. Figueiredo Neto, M. Gidlund, Cardiovascular disease parameters in periodontitis. J. Periodontol. 80, 378–388 (2009)CrossRefGoogle Scholar
  29. 29.
    M.C.P. Freitas, A.M. Figueiredo Neto, V. Giampaoli, E.C.Q. Aubin, M.M.A.L. Barbosa, N.R.T. Damasceno, Z-scan analysis: a new method to determine the oxidative state of low-density lipoprotein and its association with multiple cardiometabolic biomarkers. Braz. J. Phys. 46, 163–169 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    H.A. Fonseca, C.R. Bittencourt, F.A. Fonseca, A.M. Monteiro, P.R. Santos, L. Camargo, L.A. Costa, A. Murad, M. Gidlund, A.M. Figueiredo Neto, M.C. Izar, Non-linear optical responses of low-density lipoprotein are associated with intima-media thickness of carotid artery in athletes. Cell Biochem. Biophys. 74, 253–262 (2016)CrossRefGoogle Scholar
  31. 31.
    R.J. Havel, H.A. Eder, J.H. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955)CrossRefGoogle Scholar
  32. 32.
    G. Cazzolato, P. Avogaro, G. Bittolo-Bon, Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic. Biol. Med. 11, 247–253 (1991)CrossRefGoogle Scholar
  33. 33.
    M. Lu, O. Gursky, Biomol. Concepts 4, 501 (2013)CrossRefGoogle Scholar
  34. 34.
    P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985)CrossRefGoogle Scholar
  35. 35.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n_2 measurements. Opt. Lett. 14, 955–957 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    W. Schärtl, Light scattering from polymer solutions and nanoparticle dispersions (Springer-Verlag, Berlin, 2007), pp. 57–58Google Scholar
  37. 37.
    E.B. Knudsen, H.O. Sørensen, J.P. Wright, G. Goret, J. Kieffer, FabIO: easy access to two-dimensional X-ray detector images in Python. J. Appl. Crystallogr. 46, 537–539 (2013)CrossRefGoogle Scholar
  38. 38.
    G. Ashiotis, A. Deschildre, Z. Nawaz, J.P. Wright, D. Karkoulis, F.E. Picca, J. Kieffer, The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Orthaber, A. Bergmann, O. Glatter, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 33, 218–225 (2000)CrossRefGoogle Scholar
  40. 40.
    E. Jones, T. Oliphant, P. Peterson, et al. Accessed 01 February 2018
  41. 41.
    S. Maric, T.K. Lind, J. Lyngsø, M. Cárdenas, J.S. Pedersen, Modeling small-angle X-ray scattering data for low-density lipoproteins: insights into the fatty core packing and phase transition. ACS Nano 11, 1080–1090 (2017)CrossRefGoogle Scholar
  42. 42.
    C.L.P. Oliveira, A.M. Monteiro, A.M. Figueiredo Neto, Structural modifications and clustering of low-density lipoproteins in solution induced by heating. Braz. J. Phys. 44, 753–764 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    V. Kumar, S.J. Butcher, K. Öörni, P. Engelhardt, J. Heikkonen, K. Kaski, M. Ala-Korpela, P.T. Kovanen, Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 6, e18841 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    S.L. Gómez, A.M. Monteiro, S.R. Rabbani, A.C. Bloisee, S.M. Carneiro, S. Alves, M. Gidlund, D.S.P. Abdalla, A.M. Figueiredo Neto, Cu and Fe metallic ions-mediated oxidation of low-density lipoproteins studied by NMR, TEM and Z-scan technique. Chem. Phys. Lipids 163, 545–551 (2010)CrossRefGoogle Scholar
  45. 45.
    A.L. Sehnem, D. Espinosa, E.S. Gonçalves, A.M. Figueiredo Neto, Thermal lens phenomenon studied by the Z-scan technique: measurement of the thermal conductivity of highly absorbing colloidal solutions. Braz. J. Phys. 46, 547–555 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    S. Alves, A. Bourdon, A.M. Figueiredo Neto, Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient. J. Opt. Soc. Am. B 20, 713 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long‐transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3–8 (1965)ADSCrossRefGoogle Scholar
  48. 48.
    M. Quintem, Optical properties of nanoparticle systems: Mie and beyond (Wiley-VCH, Weinheim, 2010)Google Scholar
  49. 49.
    C. Bohren, D. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)Google Scholar
  50. 50.
    M. Derakhshesh, M.R. Gray, G.P. Dechaine, Energy Fuel 27, 680 (2013)CrossRefGoogle Scholar
  51. 51.
    M. de Spirito, R. Brunelli, G. Mei, F.R. Bertani, G. Ciasca, G. Greco, M. Papi, G. Arcovito, F. Ursini, T. Parasassi, Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface Sites. Biophys. J. 90, 4239–4247 (2006)CrossRefGoogle Scholar
  52. 52.
    H. Itabe, Oxidative modification of LDL: its pathological role in atherosclerosis. Clin. Rev. Allergy Immunol. 37, 4–11 (2009)CrossRefGoogle Scholar
  53. 53.
    T. Obama, R. Kato, Y. Masuda, K. Takahashi, T. Aiuchi, H. Itabe, Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics 7, 2132–2141 (2007)CrossRefGoogle Scholar
  54. 54.
    G. Spiteller, The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol. Nutr. Food Res. 49, 999–1013 (2005)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations