Skip to main content
Log in

Structural and Nonlinear Optical Characteristics of In Vitro Glycation of Human Low-Density Lipoprotein, as a Function of Time

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Modified low-density lipoprotein (LDL) is a well-known risk marker for diabetes and cardiovascular disease. In vitro and in vivo studies have shown that native LDL particles, when modified by oxidation and/or glycation processes, become proatherogenic. Other studies have shown that high LDL concentrations also contribute to atherogenic diseases. In the present in vitro study, we investigate structural characteristics, linear and nonlinear optical properties of LDL particles modified by glycation, compared to modified-control and non-modified LDL (LDLnat). LDL particles were isolated from normolipidemic individuals and aliquots were incubated in PBS (LDLcontrol) and glycated (LDLglyc) with glycolaldehyde (GAD) from 2 to 6 days. The nonlinear optical Z-Scan experiments indicate that GAD modifies the optical properties of the LDL. These results indicate the application of a nonlinear optical technique as a tool to investigate the characteristics of LDL particles, in particular when modifications are induced in the particles by glycation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas Seventh Edition 2015, Online version of IDF Diabetes Atlas: www.diabetesatlas.org

  2. T. Filippatos, V. Tsimihodimos, E. Pappa, M. Elisaf, Curr. Vasc. Pharmacol. 15, 566 (2017)

    Article  Google Scholar 

  3. R. Neviere, Y. Yu, L. Wang, F. Tessier, E. Boulanger, Glycoconj. J. 33, 607 (2016)

    Article  Google Scholar 

  4. A.P.Q. Mello, I.T. da Silva, D.S. Abdalla, N.R.T. Damasceno, Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215, 257–265 (2011)

    Article  Google Scholar 

  5. R. Nagai, K. Matsumoto, X. Ling, H. Suzuki, T. Araki, S. Horiuchi, Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49, 1714–1723 (2000)

    Article  Google Scholar 

  6. A. Zmysłowski, A. Szterk, Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis. 16, 188 (2017)

    Article  Google Scholar 

  7. C.M. Parrinello, E. Selvin, Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Curr. Diab. Rep. 14, 548 (2014)

    Article  Google Scholar 

  8. H. Yoshida, R. Kisugi, Mechanisms of LDL oxidation. Clin. Chim. Acta 411, 1875–1882 (2010)

    Article  Google Scholar 

  9. M. Brownlee, Nature 414, 813 (2001)

    Article  ADS  Google Scholar 

  10. M.F. Lopes-Virella, K.J. Hunt, N.L. Baker, J. Lachin, D.M. Natah, G. Virella, Diabetes 60, 582 (2011)

    Article  Google Scholar 

  11. N.N. Younis, H. Soran, P. Pemberton, V. Charlton-Menys, M.M. Elseweidy, P.N. Durrington, Small dense LDL is more susceptible to glycation than more buoyant LDL in Type 2 diabetes. Clin. Sci. 124, 343–349 (2013)

    Article  Google Scholar 

  12. S. Ahmad, M.S. Khan, F. Akhter, M.S. Khan, A. Khan, J.M. Ashraf, R.P. Pandey, U. Shahab, Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology 24, 979–990 (2014)

    Article  Google Scholar 

  13. G. Aldini, G. Vistoli, M. Stefek, N. Chondrogianni, T. Grune, J. Sereikaite, I. Sadowska-Bartosz, G. Bartosz, Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 47, 93–137 (2013)

    Article  Google Scholar 

  14. A.J. Jenkins, J.D. Best, R.L. Klein, T.J. Lyons, Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab. Res. Rev. 20, 349–368 (2004)

    Article  Google Scholar 

  15. G. Sobal, J. Menzel, H. Sinzinger, Prostaglandins, leukotrienes and essential fatty acids. 63, 177 (2000)

  16. J.W. Baynes, S.R. Thorpe, Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28, 1708–1716 (2000)

    Article  Google Scholar 

  17. G.H. Tomkin, D. Owens, Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab. Res. Rev. 17, 27–43 (2001)

    Article  Google Scholar 

  18. Z. Géhl, E. Bakondi, M.D. Resch, C. Hegeds, K. Kovács, P. Lakatos, A. Szabó, Z. Nagy, L. Virág, Redox Biol 9, 100 (2016)

    Article  Google Scholar 

  19. A.N. Orekhov, Y.V. Bobryshev, I.A. Sobenin, A.A. Melnichenko, D.A. Chistiakov, Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int. J. Mol. Sci. 15, 12807–12841 (2014)

    Article  Google Scholar 

  20. C.P. Hodgkinson, R.C. Laxton, K. Patel, S. Ye, Advanced glycation end-product of low density lipoprotein activates the Toll-Like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 2275–2281 (2008)

    Article  Google Scholar 

  21. J.N. Adams, S.E. Martelle, L.M. Raffield, B.I. Freedman, C.D. Langefeld, F.C. Hsu, J.A. Maldjian, J.D. Williamson, C.E. Hugenschmidt, J.J. Carr, A.J. Cox, D.W. Bowden, Analysis of advanced glycation end products in the DHS Mind Study. J. Diabetes Complicat. 30, 262–268 (2016)

    Article  Google Scholar 

  22. D.F. Meyer, A.S. Nealis, C.H. MacPhee, P.H.E. Groot, K.E. Suckling, K.R. Bruckdorfer, S.J. Perkins, Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu2+-induced oxidation in relation to changes in lipid composition. Biochem. J. 319, 217–227 (1996)

    Article  Google Scholar 

  23. C.L.P. Oliveira, P.R. Santos, A.M. Monteiro, A.M. Figueiredo Neto, Effect of oxidation on the structure of human low- and high-density lipoproteins. Biophys. J. 106, 2595–2605 (2014)

    Article  ADS  Google Scholar 

  24. S.L. Gómez, F.L.S. Cuppo, A.M. Figueiredo Neto, T. Kosa, M. Muramatsu, R.J. Horowicz, Rev. Phys. 59, 3059 (1999)

    Google Scholar 

  25. S. Alves, A.M. Figueiredo Neto, Advances in the non-linear optical investigation of lyotropic-like low-density human lipoproteins in the native and oxidised states. Liq. Cryst. 41, 465–470 (2014)

    Article  Google Scholar 

  26. P.R. Santos, T.C. Genaro-Mattos, A.M. Monteiro, S. Miyamoto, A.M. Figueiredo Neto, J. Biomed. Opt. 17, 105003 (2012)

    Article  ADS  Google Scholar 

  27. A.M. Monteiro, M.A.N. Jardini, V. Giampaoli, S. Alves, A.M. Figueiredo Neto, M. Gidlund, Measurement of the nonlinear optical response of low-density lipoprotein solutions from patients with periodontitis before and after periodontal treatment: evaluation of cardiovascular risk markers. J. Biomed. Opt. 17, 115004 (2012)

    Article  ADS  Google Scholar 

  28. A.M. Monteiro, M.A. Jardini, S. Alves, V. Giampaoli, E.C. Aubin, A.M. Figueiredo Neto, M. Gidlund, Cardiovascular disease parameters in periodontitis. J. Periodontol. 80, 378–388 (2009)

    Article  Google Scholar 

  29. M.C.P. Freitas, A.M. Figueiredo Neto, V. Giampaoli, E.C.Q. Aubin, M.M.A.L. Barbosa, N.R.T. Damasceno, Z-scan analysis: a new method to determine the oxidative state of low-density lipoprotein and its association with multiple cardiometabolic biomarkers. Braz. J. Phys. 46, 163–169 (2016)

    Article  ADS  Google Scholar 

  30. H.A. Fonseca, C.R. Bittencourt, F.A. Fonseca, A.M. Monteiro, P.R. Santos, L. Camargo, L.A. Costa, A. Murad, M. Gidlund, A.M. Figueiredo Neto, M.C. Izar, Non-linear optical responses of low-density lipoprotein are associated with intima-media thickness of carotid artery in athletes. Cell Biochem. Biophys. 74, 253–262 (2016)

    Article  Google Scholar 

  31. R.J. Havel, H.A. Eder, J.H. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955)

    Article  Google Scholar 

  32. G. Cazzolato, P. Avogaro, G. Bittolo-Bon, Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic. Biol. Med. 11, 247–253 (1991)

    Article  Google Scholar 

  33. M. Lu, O. Gursky, Biomol. Concepts 4, 501 (2013)

    Article  Google Scholar 

  34. P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985)

    Article  Google Scholar 

  35. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n_2 measurements. Opt. Lett. 14, 955–957 (1989)

    Article  ADS  Google Scholar 

  36. W. Schärtl, Light scattering from polymer solutions and nanoparticle dispersions (Springer-Verlag, Berlin, 2007), pp. 57–58

    Google Scholar 

  37. E.B. Knudsen, H.O. Sørensen, J.P. Wright, G. Goret, J. Kieffer, FabIO: easy access to two-dimensional X-ray detector images in Python. J. Appl. Crystallogr. 46, 537–539 (2013)

    Article  Google Scholar 

  38. G. Ashiotis, A. Deschildre, Z. Nawaz, J.P. Wright, D. Karkoulis, F.E. Picca, J. Kieffer, The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015)

    Article  Google Scholar 

  39. D. Orthaber, A. Bergmann, O. Glatter, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 33, 218–225 (2000)

    Article  Google Scholar 

  40. E. Jones, T. Oliphant, P. Peterson, et al. http://www.scipy.org. Accessed 01 February 2018

  41. S. Maric, T.K. Lind, J. Lyngsø, M. Cárdenas, J.S. Pedersen, Modeling small-angle X-ray scattering data for low-density lipoproteins: insights into the fatty core packing and phase transition. ACS Nano 11, 1080–1090 (2017)

    Article  Google Scholar 

  42. C.L.P. Oliveira, A.M. Monteiro, A.M. Figueiredo Neto, Structural modifications and clustering of low-density lipoproteins in solution induced by heating. Braz. J. Phys. 44, 753–764 (2014)

    Article  ADS  Google Scholar 

  43. V. Kumar, S.J. Butcher, K. Öörni, P. Engelhardt, J. Heikkonen, K. Kaski, M. Ala-Korpela, P.T. Kovanen, Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 6, e18841 (2011)

    Article  ADS  Google Scholar 

  44. S.L. Gómez, A.M. Monteiro, S.R. Rabbani, A.C. Bloisee, S.M. Carneiro, S. Alves, M. Gidlund, D.S.P. Abdalla, A.M. Figueiredo Neto, Cu and Fe metallic ions-mediated oxidation of low-density lipoproteins studied by NMR, TEM and Z-scan technique. Chem. Phys. Lipids 163, 545–551 (2010)

    Article  Google Scholar 

  45. A.L. Sehnem, D. Espinosa, E.S. Gonçalves, A.M. Figueiredo Neto, Thermal lens phenomenon studied by the Z-scan technique: measurement of the thermal conductivity of highly absorbing colloidal solutions. Braz. J. Phys. 46, 547–555 (2016)

    Article  ADS  Google Scholar 

  46. S. Alves, A. Bourdon, A.M. Figueiredo Neto, Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient. J. Opt. Soc. Am. B 20, 713 (2003)

    Article  ADS  Google Scholar 

  47. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long‐transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3–8 (1965)

    Article  ADS  Google Scholar 

  48. M. Quintem, Optical properties of nanoparticle systems: Mie and beyond (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  49. C. Bohren, D. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)

    Google Scholar 

  50. M. Derakhshesh, M.R. Gray, G.P. Dechaine, Energy Fuel 27, 680 (2013)

    Article  Google Scholar 

  51. M. de Spirito, R. Brunelli, G. Mei, F.R. Bertani, G. Ciasca, G. Greco, M. Papi, G. Arcovito, F. Ursini, T. Parasassi, Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface Sites. Biophys. J. 90, 4239–4247 (2006)

    Article  Google Scholar 

  52. H. Itabe, Oxidative modification of LDL: its pathological role in atherosclerosis. Clin. Rev. Allergy Immunol. 37, 4–11 (2009)

    Article  Google Scholar 

  53. T. Obama, R. Kato, Y. Masuda, K. Takahashi, T. Aiuchi, H. Itabe, Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics 7, 2132–2141 (2007)

    Article  Google Scholar 

  54. G. Spiteller, The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol. Nutr. Food Res. 49, 999–1013 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

From Brazil, we acknowledge the National Council for Scientific and Technological Development (CNPq – 465259/2014-6), the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Institute of Science and Technology Complex Fluids (INCT-FCx), and the São Paulo Research Foundation (FAPESP – 2014/50983-3 and 2016/24531-3).

Author information

Authors and Affiliations

Authors

Contributions

A.P.Q.M. wrote the manuscript and made the LDL glycation; G.A. made the Z-Scan experiment; D.H.G.E. did the linear optical experiment and analyzed the Z-Scan data; D.R. did the X-ray experiment and analysis; A.M.F.N. designed the experiment, wrote and revised the manuscript, and researched data. The guarantor is Prof. Dr. Antonio Martins Figueiredo Neto.

Corresponding author

Correspondence to Antonio Martins Figueiredo Neto.

Ethics declarations

The project was approved by the ethics committee of the university and all participants provided written informed consent prior to study initiation.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz Mello, A.P., Albattarni, G., Espinosa, D.H.G. et al. Structural and Nonlinear Optical Characteristics of In Vitro Glycation of Human Low-Density Lipoprotein, as a Function of Time. Braz J Phys 48, 560–570 (2018). https://doi.org/10.1007/s13538-018-0600-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0600-x

Keywords

Navigation