Advertisement

Brazilian Journal of Physics

, Volume 48, Issue 5, pp 477–484 | Cite as

Effect of Gold Nanoparticles and Unwanted Residues on Raman Spectra of Graphene Sheets

  • Luis E. G. ArmasEmail author
  • Vitor M. Zamarion
  • Luis T. QuispeEmail author
  • Enrique P. U. Otero
  • J. W. Menezes
  • Lizandro B. R. Zegarra
  • Abdur Rahim
  • Koiti Araki
  • Henrique E. Toma
  • Carlos Jacinto
  • Chiara Valsechi
  • Antonio C. Seabra
Condensed Matter
  • 164 Downloads

Abstract

We report the effect of gold nanoparticles (AuNPs) and unwanted sodium citrate residues (UnR) left after deposition of AuNPs by drop-casting method on the Raman spectra of graphene sheets (GS). The AuNPs solution was deposited on three different substrates: 5.0 wt% Yb3+-doped (Q5) phosphate glass, silica glass (S1), and Si/SiO2-300 nm (S2) substrates. For Q5 substrate, a slight increase in intensity of the G peak was observed, mostly for thinner layers, which can be attributed to a weak SERS effect shielded by UnR. The combination of the following aspects: a blue shift of the G band position, a slight increase in the FWHM (Full Width at Half Maximum), and a slight increase of the Raman intensities of both G and 2D bands in other GS without UnR supports the argument of shielded SERS effect. On the other hand, the effects of UnR on the S1 and S2 substrates produce a decrease on the Raman intensities of G and 2D bands, opposite to the effect produced by the AuNPs; this result was found more intense for the S2 substrate in relation to S1. This is possibly caused by the greater amount of UnR accumulated on the Si/SiO2 substrate, due to its higher hydrophilicity in relation to other samples. Additional Raman measurements reveal that the Raman intensity of GS in all substrates is unaffected by the presence of a possible humidity on GS, revealing the effect of UnR. Hence, it is vital to understand how residues influence the salient features of GS/AuNPs.

Keywords

Graphene Drop-casting Gold nanoparticles Unwanted residues Raman spectroscopy Substrate effect Raman maps 

Notes

Acknowledgments

The authors would like to thank the Brazilian Agency CNPq for the partial financial support through the Project No. 460733/2014–1.

References

  1. 1.
    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A.P. Rocha-Santos, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Hu, Z. Yao, X. Wang, Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 56, 3477–3502 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Saquib, A. Halder, Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide. J. Nanopart. Res. 20, 46 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely, Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta, Propene epoxidation with dioxygen catalyzed by gold clusters. Angewandte Chemie - International Edition 48, 7862–7866 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Zhao, Y. Zhu, Graphene-based hybrid films for plasmonic sensing. Nanoscale 7, 14561–14576 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han, X. Wang, Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale 2, 988–994 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011)CrossRefGoogle Scholar
  12. 12.
    F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011)CrossRefGoogle Scholar
  13. 13.
    Y.V. Stebunov, O.A. Aftenieva, A.V. Arsenin, V.S. Volkov, Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl. Mater. Interfaces 7, 21727–21734 (2015)CrossRefGoogle Scholar
  14. 14.
    I. Khalil, N. Julkapli, W. Yehye, W. Basirun, S. Bhargava, Graphene–gold nanoparticles hybrid—synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials 9, 406 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, J.Z. Zhang, Unique gold nanoparticle aggregates as a highly active surface-enhanced raman scattering substrate. J. Phys. Chem. B 108, 19191–19197 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Lee, S. Shim, B. Kim, H.S. Shin, Surface-enhanced raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem. Eur. J. 17, 2381–2387 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    E. Koo, S.Y. Ju, Role of residual polymer on chemical vapor grown graphene by Raman spectroscopy. Carbon 86, 318–324 (2015)CrossRefGoogle Scholar
  20. 20.
    B.B. KANTAR, M. ÖZTÜRK, H. ÇETİN, The effects of lithographic residues and humidity on graphene field effect devices. Bull. Mater. Sci. 40, 239–245 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11, 55 (1951)CrossRefGoogle Scholar
  22. 22.
    D. Grasseschi, R.A. Ando, H.E. Toma, V.M. Zamarion, Unraveling the nature of Turkevich gold nanoparticles: the unexpected role of the dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)CrossRefGoogle Scholar
  23. 23.
    L.E.G. Armas, G.T. Landi, M.F.G. Huila, A. Champi, M. Pojar, A.C. Seabra, A.D. Santos, K. Araki, H.E. Toma, Graphene modification with gold nanoparticles using the gas aggregation technique. Diam. Relat. Mater. 23, 18–22 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Shen, J. Li, M. Yi, X. Zhang, S. Ma, Preparation of graphene by jet cavitation. Nanotechnology 22, 365306 (2011)CrossRefGoogle Scholar
  25. 25.
    W.X. Wang, S.H. Liang, T. Yu, D.H. Li, Y.B. Li, X.F. Han, Journal of Applied Physics 109 (2011)Google Scholar
  26. 26.
    T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 2645–2649 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5, 608–612 (2011)CrossRefGoogle Scholar
  29. 29.
    J.S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, M.S. Dresselhaus, <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math> band Raman spectra of single, double and triple layer graphene. Carbon 47, 1303–1310 (2009)Google Scholar
  30. 30.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    K. Xu, P. Cao, J.R. Heath, Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 1188–1191 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    H. Komurasaki, T. Tsukamoto, K. Yamazaki, T. Ogino, Layered structures of interfacial water and their effects on raman spectra in graphene-on-sapphire systems. J. Phys. Chem. C 116, 10084–10089 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan, N.A. Koratkar, Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  • Luis E. G. Armas
    • 1
    Email author
  • Vitor M. Zamarion
    • 2
  • Luis T. Quispe
    • 3
    Email author
  • Enrique P. U. Otero
    • 4
  • J. W. Menezes
    • 1
  • Lizandro B. R. Zegarra
    • 5
  • Abdur Rahim
    • 6
  • Koiti Araki
    • 2
  • Henrique E. Toma
    • 2
  • Carlos Jacinto
    • 7
  • Chiara Valsechi
    • 1
  • Antonio C. Seabra
    • 8
  1. 1.Grupo de Óptica, Micro e Nanofabricação de Dispositivos (GOMNDI)Universidade Federal do PampaRio Grande do SulBrazil
  2. 2.Instituto de QuímicaLaboratório de Nanotecnologia da Universidade de São PauloSão PauloBrazil
  3. 3.Laboratório de Filmes Finos e SuperfíciesUniversidade Federal de Santa Catarina-UFSCFlorianópolisBrazil
  4. 4.Departamento de Física da Universidade Federal de Roraima-UFRRBoa Vista-RoraimaBrazil
  5. 5.Departamento de Matemática de La Universidad Nacional del Santa—UNSChimbotePeru
  6. 6.Departament of Material Physics and NanotechnologyKhushal Khan Khattak UniversityKarakPakistan
  7. 7.Grupo de Fotônica e Fluidos Complexos, Instituto de FísicaUniversidade Federal de Alagoas – UFALMaceioBrazil
  8. 8.Laboratório de Sistemas Integráveis do Departamento de Engenharia de Sistemas Eletrônicos da Escola Politécnica da USP (LSI-PSI/EPUSP)São PauloBrazil

Personalised recommendations