Advertisement

Transitioning Scenario of Bianchi-I Universe Within f (R,T) Formalism

  • Anil Kumar YadavEmail author
Particles and Fields
  • 8 Downloads

Abstract

In this paper, we report the existence of transitioning scenario of Bianchi type I universe in the context of f (R,T) gravity with special case f (R,T) = f1(R) + f2(R)f3(T) and its functional forms f1(R) = f2(R) = R and f3(T) = αT with α being constant. The exact solution of the Einstein’s field equations is derived by using the generalized hybrid expansion law that yields the model of transitioning universe from early deceleration phase to current acceleration phase. Under this specification, we obtain the singular as well as non singular solution of Bianchi type I model depending upon the particular choice of the value of problem parameters. We also notice that the validation of weak energy condition and dominant energy condition and violation of strong energy condition occurs for these values of problem parameters. The deceleration parameter is found to be negative at present (z = 0) in the derived model which is supported by recent observations.

Keywords

Transitioning universe Bianchi type - I f (R,T) gravity 

Notes

Acknowledgments

The author is thankful to the anonymous referee for his useful comments which have enabled us to improve the manuscript substantially.

References

  1. 1.
    T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, F(r,t) gravity. Phys. Rev. D. 84, 024020 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.G. Riess, et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    S. Perlmutter, et al., Measurements of ω and Λ from 42 high-redshift supernovae . Astrophys. J. 517, 565 (1999)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Kumar, R.C. Nunes, Observational constraints on dark matter - dark energy scattering cross section. Eur. Phys. J. C. 77, 734 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    E. Dil, Cosmology of q-deformed dark matter and dark energy. Phys. Dark Univ. 16, 1 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Behrouz, et al., Interacting quintom dark energy with nonminimal derivative coupling. Phys. Dark Univ. 15, 72 (2017)CrossRefGoogle Scholar
  7. 7.
    C. Germani, Initial conditions for the Galileon dark energy. Phys. Dark Univ. 15, 1 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Jennen, J.G. Pereira, Dark energy as a kinematic effect. Phys. Dark Univ. 11, 49 (2016)CrossRefGoogle Scholar
  9. 9.
    P.H.R.S. Moraes, P.K. Sahoo, The simplest non-minimal matter-geometry coupling in the f(R,T) cosmology. Eur. Phys. J. C. 77, 480 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Yadav, Bianchi-v string cosmology with power law expansion in f(R,T) gravity. Euro Phys. J. Plus. 129, 194 (2014)CrossRefGoogle Scholar
  11. 11.
    A.K. Yadav, A.T. Ali, Invariant Bianchi type I Models in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys. 15, 1850026 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A.K. Yadav, P.K. Srivastava, L. Yadav, Hybrid expansion law for dark energy dominated universe in f (R,T) Gravity. Int. J. Theor. Phys. 54, 1671 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    A.K. Yadav, A. Sharma, A transitioning universe with time varying G and decaying Λ Research in. Astron. Astrophys. 13, 501 (2013)CrossRefGoogle Scholar
  14. 14.
    V. Singh, C.P. Singh, Friedmann cosmology with matter creation in modified f(R,T) gravity. Int. J. Theor. Phys. 55, 1257 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Parker, Quantized fields and particle creation in expanding universes. Phys. Rev D. 3, 2546 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    R. Myrzakulov, FRW Cosmology In f(R,T) gravity. Eur. Phys. J. C. 72, 2203 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M.J.S. Houndjo, Reconstruction of f(R,T) gravity describing matter dominated and accelerated phases. Int. J. Mod. Phys. D. 21, 1250003 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Jamil, D. Momeni, M. Raza, R. Mryzakulov, Reconstruction of some cosmological models in f(R,T) cosmology. Eur. Phys. J. C. 72, 1999 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    F. Kiani, K. Nozari, Energy conditions in f(T,𝜃) gravity and compatibility with a stable de Sitter solution. Phys. Lett. B. 728, 554 (2014)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Zubair, S. Waheed, Y. Ahmad, Static spherically symmetric wormholes in f(R,T) gravity. Eur. Phys. J. C. 76, 444 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Yousaf, M Ilyas, M.Z. Bhatti, Influence of modification of gravity on spherical wormhole models. Mod. Phys. Lett. A. 32, 1750163 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    P.H.R.S. Moraes, R.A.C. Correa, R.V. Lobato, Analytical general solutions for static wormholes in f(R,T) gravity. JCAP. 07, 029 (2017)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    P.H.R.S. Moraes, P.K. Sahoo, Modelling wormholes in f(R,T) gravity. Phys. Rev. D. 96, 044038 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Das, F. Rahaman, B.K. Guha, S. Ray, Compact stars in f(R,T) gravity. Eur. Phys. J. C. 76, 654 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    M. Sharif, Z. Yousaf, Dynamical analysis of self-gravitating stars in f(R,T) gravity. Astrophys. Space Sc. 354, 471 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    H. Shabani, M. Farhoudi, Cosmological and solar system consequences of f(R,T) Gravity Models. Phys. Rev. D. 90, 044031 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M. Shen, L. Zhao, Oscillating quintom model with time periodic varying deceleration parameter chin. Phys. Lett. 31, 010401 (2014)Google Scholar
  28. 28.
    O. Akarsu, C.B. Kilinc, LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter. Gen. Relativ. Grav. 42, 119 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    S. Kumar, C.P. Singh, Anisotropic dark energy models with constant deceleration parameter. Gen. Relativ. Grav. 43, 1427 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A.K. Yadav, B. Saha, LRS Bianchi-I Anisotropic cosmological model with dominance of dark energy. Astrophys. Space Sc. 337, 759 (2012)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    B. Saha, T. Boyadjiev, Bianchi type-I cosmology with scalar and spinor fields. Phys. Rev. D. 69, 124010 (2004)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A.K. Yadav, A transitioning universe with anisotropic dark energy. Astrophys. Space Sc. 361, 276 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    T. Harko, et al., . Eur. Phys. J. C. 75, 386 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    P.H.R.S. Moraes, et al., . Eur. Phys. J. C. 78, 192 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    C. Barcelo, M. Visser, Twilight for the energy conditions. Int. J. Mod. Phys. D. 11, 1553 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    A. Ozgur, et al., Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints. JCAP. 01, 022 (2014)Google Scholar
  37. 37.
    G. Hinshaw, et al., Nine-year WMAP observations: cosmological parameter results. Astrophys. J. 208, 19 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Aygun, C. Aktas, I. Yilmaz, . Astrophys. Space Sc. 361, 380 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    P.H.R.S. Moraes, P.K. Sahoo, G. Ribeiro, R.A.C. Correa, A cosmological scenario from Starobinsky model with f(R,T) formalism arXiv:http://arXiv.org/abs/1712.07569 [gr-qc] (2017)
  40. 40.
    R Zaregonbadi, et al., Dark matter from f(R,T) gravity. Phys. Rev. D. 94, 084052 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    A.K. Yadav, L. Yadav, Bianchi Type III Anisotropic dark energy models with constant deceleration parameter. Int. J. Theor. Phys. 50, 218 (2011)CrossRefzbMATHGoogle Scholar
  42. 42.
    A.K. Yadav, Some anisotropic dark energy models in Bianchi type-V space-time. Astrophys. Space Sc. 335, 565 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    B. Saha, A.K. Yadav, Dark energy model with variable q and ω in LRS Bianchi-II space-time. Astrophys. Space Sc. 341, 651 (2012)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of PhysicsUnited College of Engineering and ResearchGreater NoidaIndia

Personalised recommendations