Advertisement

Brazilian Journal of Physics

, Volume 49, Issue 1, pp 55–61 | Cite as

Paracoccidioides brasiliensis Molecular Detection by the Label-Free Colorimetric Method Using Gold Nanoparticles

  • Olavo O. Comparato Filho
  • Marcela A. Cândido
  • Thaís S. Veriato
  • Guilherme M. Lemes
  • Maiara L. Castilho
  • Leandro RanieroEmail author
Condensed Matter
  • 2 Downloads

Abstract

Paracoccidioides brasiliensis (P. brasiliensis) is a thermo-dependent dimorphic fungus found in the environment as mycelia (~ 25 °C) also as yeast cells (~ 37 °C) in humans. This species is the etiologic agent of Paracoccidioidomycosis (PCM), a chronic granulomatous progressive disease that attacks skin, lungs, and other internal organs. The epidemiological data shows predominance of PCM in South American countries. Brazil itself has 80.0% of cases. This infection is responsible for 52.0% of deaths from Brazilian mycosis. Diagnosis can fail by cross-reaction with other diseases, high costs, and time-consuming procedures. The aim of this study is to identify the presence of P. brasiliensis using gold nanoparticles combined to pathogen specific GP43 or GP27 DNA sequences added to develop a rapid, low-cost label-free colorimetric diagnostic tool. The label-free colorimetric test was evaluated with 192 samples (96 positive and 96 negative). The receiver operating characteristic results suggest that the technique can identify P. brasiliensis effectively. The GP43 DNA sequences showed 100.0% sensitivity plus 96.0% specificity; GP27 showed 92.0% sensitivity plus 95.6% specificity. Development of such low-cost diagnostic methods will have great impact in remote endemic areas.

Keywords

Paracoccidioides brasiliensis Gold nanoparticles Molecular detection Label-free colorimetric tests 

References

  1. 1.
    A.B. Motoyama, E.J. Venancio, G.O. Brandão, S. Petrofeza-Silva, I.S. Pereira, C.M. Soares, M.S.S. Felipe, J. Clin. Microbiol. 38, 3106–3109 (2000)Google Scholar
  2. 2.
    M.I. Borges-Walmsley, D. Chen, X. Shu, A.R. Walmsley, Trends Microbiol. 10, 80–87 (2002)CrossRefGoogle Scholar
  3. 3.
    D. Borelli, Pan. Amer. Hlth. Org. Scient. Publ. 254, 59–64 (1972)Google Scholar
  4. 4.
    M. Franco, M.R. Montenegro, R.P. Mendes, S.A. Marques, N.L. Dillon, N.G.d.S. Mota, Rev. Soc. Bras. Med. Trop. 20, 129–132 (1987)CrossRefGoogle Scholar
  5. 5.
    A. Restrepo, M. Sabouraudia, J. Med. Vet. Mycol. 23, 323–334 (1985)CrossRefGoogle Scholar
  6. 6.
    M. Lazera, M. Cavalcanti, L. Trilles, M. Nishikawa, B. Wanke, Med. Mycol. 36, 119–122 (1998)Google Scholar
  7. 7.
    A.C. Nogueira, D.S. de Sousa Dantas, F.G. Soriano, S.P. Pilli, J.E.J. Vidro, E. Tafner, L.T. de Andrade, L.M. Maruta, H. Minamoto, J.P. Otoch, Autops. Case. Rep. 1, 31–38 (2011)Google Scholar
  8. 8.
    M.R.P. Fortes, H.A. Miot, C.S. Kurokawa, M.E.A. Marques, S.A. Marques, An. Bras. Dermatol. 86, 516–524 (2011)CrossRefGoogle Scholar
  9. 9.
    G. San-Blas, G. Niño-Vega, T. Iturriaga, Med. Mycol. 40, 225–242 (2002)CrossRefGoogle Scholar
  10. 10.
    E.T. Beck, K.J. Henrickson, Future Microbiol 5, 901–916 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Li, L.J. Rothberg, J. Am. Chem. Soc. 126, 10958–10961 (2004)CrossRefGoogle Scholar
  12. 12.
    R. Mattar-Filho, M. Azevedo, M. Pereira, R. Jesuino, S. Salem-Izacc, W. Brito, J. Gesztesi, R. Soares, M. Felipe, C. Soares, J. Med. Vet. Mycol. 35, 341–345 (1997)CrossRefGoogle Scholar
  13. 13.
    A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr., P.G. Schultz, Nature 382, 609 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    M. Castilho, L. Vieira, A. Campos, C. Achete, M. Cardoso, L. Raniero, Sensors Actuators B Chem. 215, 258–265 (2015)CrossRefGoogle Scholar
  15. 15.
    J. F. Martins, M. L. Castilho, M. A. Cardoso, A. P. Carreiro, A. A. Martin and L. Raniero, (2012)Google Scholar
  16. 16.
    J. Fagundes, M.L. Castilho, C.A.T. Soto, L. de Souza Vieira, R.A. Canevari, P.P. Fávero, A.A. Martin, L. Raniero, Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 28–35 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J.M. Slocik, J.S. Zabinski Jr., D.M. Phillips, R.R. Naik, Small 4, 548–551 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Liu, Y. Lu, J. Am. Chem. Soc. 125, 6642–6643 (2003)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, R. Lévy, D.G. Fernig, M. Brust, J. Am. Chem. Soc. 128, 2214–2215 (2006)CrossRefGoogle Scholar
  20. 20.
    J. Liu, Z. Cao, Y. Lu, Chem. Rev. 109, 1948–1998 (2009)CrossRefGoogle Scholar
  21. 21.
    D.J. Ahn, S. Lee, J.M. Kim, Adv. Funct. Mater. 19, 1483–1496 (2009)CrossRefGoogle Scholar
  22. 22.
    M.M. Ali, Y. Li, Angew. Chem. 121, 3564–3567 (2009)CrossRefGoogle Scholar
  23. 23.
    K.Y. Pu, B. Liu, Adv. Funct. Mater. 19, 1371–1378 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Quinten, U. Kreibig, Surf. Sci. 172, 557–577 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Lazarides, G.C. Schatz, J. Phys. Chem. B 104, 460–467 (2000)CrossRefGoogle Scholar
  26. 26.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Lee, M.S. Han, C.A. Mirkin, Angew. Chem. Int. Ed. 46, 4093–4096 (2007)CrossRefGoogle Scholar
  28. 28.
    P.V. Baptista, G. Doria, P. Quaresma, M. Cavadas, C.S. Neves, I. Gomes, P. Eaton, E. Pereira, R. Franco, Prog. Mol. Biol. Transl. Sci., Elsevier 104, 427–488 (2011)CrossRefGoogle Scholar
  29. 29.
    L. Wang, X. Liu, X. Hu, S. Song and C. Fan. Chem. Commun. 3780–3782 (2006)Google Scholar
  30. 30.
    F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J.D. Yuen, B.B. Hsu, A.J. Heeger, Proc. Natl. Acad. Sci. 107, 10837–10841 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    H. Li, L. Rothberg, Anal. Chem. 77, 6229–6233 (2005)CrossRefGoogle Scholar
  32. 32.
    P. Lee, D. Meisel, J. Phys. Chem. 86, 3391–3395 (1982)CrossRefGoogle Scholar
  33. 33.
    M.A.G. Cardoso, J.H.M. Tambor, F.G. Nobrega, Yeast 24, 607–616 (2007)CrossRefGoogle Scholar
  34. 34.
    F.V. Morais, T.F. Barros, M.K. Fukada, P.S. Cisalpino, R. Puccia, J. Clin. Microbiol. 38, 3960–3966 (2000)Google Scholar
  35. 35.
    G. Del Negro, N.M. Garcia, E.G. Rodrigues, M.I.N. Cano, M.S. de Aguiar, V.d.S. Lírio, C.d.S. Lacaz, Rev. Inst. Med. Trop. Sao Paulo 33, 277–280 (1991)CrossRefGoogle Scholar
  36. 36.
    J. Zhou, J. Ralston, R. Sedev, D.A. Beattie, J. Colloid Interface Sci. 331, 251–262 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    L. Vieira, M. Castilho, I. Ferreira, J. Ferreira-Strixino, K. Hewitt, L. Raniero, Photodiagn. Photodyn. Ther. 18, 6–11 (2017)CrossRefGoogle Scholar
  38. 38.
    E.Z. Martinez, F. Louzada-Neto, B.d.B. Pereira, Cad. Saúde Colet.,(Rio J.). 11, 7–31 (2003)Google Scholar
  39. 39.
    R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 2001)Google Scholar
  40. 40.
    D. Shaw, Introduction to Colloid and Surface Chemistry (Colloid and Surface Engineering) (Butterworth-Heinemann, Oxford, 1992)Google Scholar
  41. 41.
    M.S. Ferreira, Rev. Patol. Trop. 22, 267–406 (1993)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  • Olavo O. Comparato Filho
    • 1
  • Marcela A. Cândido
    • 1
  • Thaís S. Veriato
    • 1
  • Guilherme M. Lemes
    • 1
  • Maiara L. Castilho
    • 2
  • Leandro Raniero
    • 1
    Email author
  1. 1.Laboratório de Nanossensores, Instituto de Pesquisa & DesenvolvimentoUniversidade do Vale do ParaíbaSão PauloBrazil
  2. 2.Laboratório de Bionanotecnologia, Instituto de Pesquisa & DesenvolvimentoUniversidade do Vale do ParaíbaSão PauloBrazil

Personalised recommendations