Advertisement

Feedback Control on Einstein-Podolsky-Rosen Steering of Dissipative System

  • Zhiming HuangEmail author
General and Applied Physics
  • 27 Downloads

Abstract

In this article, we investigate the behaviors of Einstein-Podolsky-Rosen (EPR) steering for two uniformly accelerated atoms coupled with electromagnetic vacuum fluctuation. We firstly analyze the solving process of master equation that describes the system evolution. Unlike the complicated behaviors of entanglement, EPR steering decays with decoherent time and presents sudden death, the critical points of which can be located. In addition, small acceleration and interatomic distance can decrease the degradation of EPR steering. Since the measure of EPR steering adopted in this paper is equivalent to that of Bell non-locality, the EPR steering dynamics discussed in the article is applied equally to Bell non-locality.

Keywords

Einstein-Podolsky-Rosen steering Dynamics Electromagnetic field 

Notes

Acknowledgements

The work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010), the Young Science and Technology Talent Growth Fund Project of Education Department of Guizhou Province of China (Qian Jiao He KY Zi[2018]426), the Major Special Fund Project of Research and Innovation for Qiannan Normal university for Nationalities of China (QNSY2018BS015), the Industrial Technology Foundation of Qiannan State of China (Qiannan Ke He Gong Zi (2017) 9 Hao), and the Scientific Research Foundation for High-level Talents of Qiannan Normal University for Nationalities (qnsyrc201716).

References

  1. 1.
    E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 31, 555 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Schrödinger, Probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 32, 446 (1936)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Skrzypczyk, M. Navascués, D. Cavalcanti, Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Z.Z. Qin, X.W. Deng, C.X. Tian, M.H. Wang, X.L. Su, C.D. Xie, K.C. Peng, Manipulating the direction of Einstein-Podolsky-Rosen steering. Phys. Rev. A. 95, 052114 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Branciard, E.G. Cavalcanti, S.P. Walborn, V. Scarani, H.M. Wiseman, One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A. 85, 010301 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Gehring, et al., Implementation of continuous-variable quantum key distribution with composable and one-sided-deviceindependent security against coherent attacks. Nat. Commun. 6, 8795 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Piani, J. Watrous, Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Q. He, L. Rosales-Zárate, G. Adesso, M.D. Reid, Secure continuous variable teleportation and Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 115, 180502 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    E.G. Cavalcanti, S.J. Jones, H.M. Wiseman, M.D. Reid, Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A. 80, 032112 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A.C.S. Costa, R.M. Angelo, . Quantification of Einstein-Podolski-Rosen steering for two-qubit states. 93 (R), 020103 (2016)Google Scholar
  14. 14.
    D.J. Saunders, S.J. Jones, H.M. Wiseman, G.J. Pryde, Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010)CrossRefGoogle Scholar
  15. 15.
    B. Wittmann, S. Ramelow, F. Steinlechner, N.K. Langford, N. Brunner, H.M. Wiseman, R. Ursin, A. Zeilinger, Loophole-free einsteinCPodolskyCRosen experiment via quantum steering. New J. Phys. 14, 053030 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    K. Sun, J.-S. Xu, X.-J. Ye, Y.-C. Wu, J.-L. Chen, C.-F. Li, G.-C. Guo, Experimental demonstration of the Einstein-Podolsky-Rosen steering game based on the all-versus-nothing proof. Phys. Rev. Lett. 113, 140402 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S. Wollmann, N. Walk, A.J. Bennet, H.M. Wiseman, G.J. Pryde, Observation of genuine one-way Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 116, 160403 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    K. Sun, X. Ye, J. Xu, X. Xu, J. Tang, Y. Wu, J. Chen, C. Li, G. Guo, Experimental quantification of asymmetric EinsteinPodolsky-Rosen steering. Phys. Rev. Lett. 116, 160404 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Z.M. Huang, Manipulating Einstein-Podolsky-Rosen steering by Quantum-Jump-Based feedback in dissipative environment. Int. J. Theor. Phys. 57, 3473 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Albash, S. Boixo, D. Lidar, P. Zanardi, Quantum adiabatic Markovian master equations. New J. Phys. 14, 123016 (2012)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H.-P. Breuer, F. Petruccione. The theory of open quantum systems (Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar
  22. 22.
    V. Gorini, A. Kossakowski, E.C.G. Surdarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S.M. Barnett, P.M. Radmore. Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 1997)zbMATHGoogle Scholar
  25. 25.
    Z.M. Huang, D.W. Qiu, P. Mateus, Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A. 81, 042105 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Q. Chen, C. Zhang, X. Yu, X.X. Yi, C.H. Oh, Quantum discord of two-qubit X states. Phys. Rev. A. 84, 042313 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Z.M. Huang, Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction. Laser Phys. Lett. 15, 025203 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Z.M. Huang, Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process. 17, 73 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    B. Li, Z.X. Wang, S.M. Fei, Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A. 83, 022321 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Z.M. Huang, H.Z. Situ, Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Z.M. Huang, Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    F.W. Ma, S.X. Liu, X. Kong, Quantum entanglement and quantum phase transition in the XY model with staggered DzyaloshinskiiMoriya interaction. Phys. Rev. A. 84, 042302 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Z.M. Huang, Z.H. Tian, Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B. 923, 458 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    R. Jafari, M. Kargarian, A. Langari, M. Siahatgar, Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Phys. Rev. B. 78, 214414 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Z.M. Huang, C. Zhang, W. Zhang, L.H. Zhao, Equivalence of quantum resource measures for X states. Int. J. Theor. Phys. 56, 3615 (2017)CrossRefzbMATHGoogle Scholar
  37. 37.
    Z.M. Huang, Z.H. Tian, Dynamics of quantum correlation in de Sitter spacetime. J. Phys. Soc. Jpn. 86, 094003 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Z.M. Huang, H.Z. Situ, Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Z.M. Huang, Protecting quantum Fisher information in curved space-time. Eur. Phys. J. Plus. 133, 101 (2018)CrossRefGoogle Scholar
  40. 40.
    M.A. Nielsen, I.L Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  41. 41.
    Y.Q. Yang, J.W. Hu, H.W. Yu, Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A. 94, 032337 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina

Personalised recommendations