Brazilian Journal of Physics

, Volume 49, Issue 1, pp 113–118 | Cite as

Combined Effect of Chirp and Exponential Density Ramp on Relativistic Self-focusing of Hermite-Cosine-Gaussian Laser in Collisionless Cold Quantum Plasma

  • Vishal Thakur
  • Niti KantEmail author
General and Applied Physics


This manuscript presents the dependence of exponential plasma density ramp on relativistic self-focusing of the Hermite-cosine-Gaussian (HcosG) chirped pulse laser in a collisionless cold quantum plasma. Self-focusing along with self-trapping of HcosG chirped pulse laser is studied for different values of laser intensity, decentered parameters, and plasma density. Numerical analysis reveals that these parameters play a key role in achieving the earlier and stronger self-focusing in cold quantum plasma. A comparative study of self-focusing of the HcosG chirped pulse laser with and without exponential density ramp profile is carried out. Exponential ramp profile is found to be more effective in achieving the stronger self-focusing of the HcosG chirped pulse laser. Combined effect of chirp and exponential plasma density ramp on relativistic self-focusing of HcosG laser in a collisionless cold quantum plasma is analyzed, and results reveal the early and strong self-focusing.


Hermite-cosine-Gaussian laser Self-focusing Collisionless cold quantum plasma Exponential plasma density ramp 


  1. 1.
    H. Hora, New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 37 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    P. Mulser, D. Bauer, Fast ignition of fusion pellets with superintense lasers: concepts, problems and prospectives. Laser Part. Beams 22, 5 (2004)ADSGoogle Scholar
  3. 3.
    F. Winterberg, Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Lourenco, N. Kowarsch, W. Scheid, P.X. Wang, Acceleration of electrons and electromagnetic fields of highly intense laser pulses. Laser Part. Beams 28, 195 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    H.Y. Niu, X.T. He, B. Qiao, C.T. Zhou, Enhanced resonant acceleration of electrons from intense laser interaction with density-attenuating plasma. Laser Part. Beams 26, 51 (2008)CrossRefGoogle Scholar
  6. 6.
    A.B. Fedotov, A.N. Naumov, V.P. Silin, S.A. Uryupin, A.M. Zheltikov, A.P. Tarasevitch, D. Von der Linde, Third-harmonic generation in a laser-pre-excited gas: the role of excited-state neutrals. Phys. Lett. A 271, 407–412 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Siegrist, Self-focusing in a plasma due to ponderomotive forces and relativistic effects. Opt. Commun. 16, 402–407 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    A. Singh, K. Walia, Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma. Appl. Phys. B Lasers Opt. 101, 617–622 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S.D. Patil, M.V. Takale, S.T. Navare, M.B. Dongare, Focusing of Hermite-cosh-Gaussian laser beams in collisionless magnetoplasma. Laser Part. Beams 28, 343–349 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V. Nanda, N. Kant, Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp. Phys. Plasmas 21, 042101 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    V. Nanda, N. Kant, M.A. Wani, Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas 20, 113109 (2013a)ADSCrossRefGoogle Scholar
  12. 12.
    V. Nanda, N. Kant, M.A. Wani, Sensitiveness of decentered parameter for relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma. IEEE Trans. Plasma Sci. 41, 2251–2256 (2013b)ADSCrossRefGoogle Scholar
  13. 13.
    N. Kant, S. Saralch, H. Singh, Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika 56, 149 (2011)Google Scholar
  14. 14.
    S.D. Patil, M.V. Takale, S.T. Navare, M.B. Dongare, V.J. Fulari, Self-focusing of Gaussian laser beam in relativistic cold quantum plasma. Optik 124, 180–183 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    N. Kant, M.A. Wani, Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption. Commun. Theor. Phys. 64, 103–107 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    T.S. Gill, R. Mahajan, R. Kaur, S. Gupta, Relativistic self-focusing of super-Gaussian laser beam in plasma with transverse magnetic field. Laser Part. Beams 30, 509–516 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T.S. Gill, R. Mahajan, R. Kaur, Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18, 033110 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Wani, N. Kant, Self-focusing of Hermite-cosh-Gaussian laser beams in plasma under density transition. Adv Opt 2014, 1–5 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Sen, B. Rathore, M. Varshney, D. Varshney, Nonlinear propagation of intense electromagnetic beams with plasma density ramp functions. J. Phys. Conf. Ser. 208, 012088 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Pukhov, J. Meyer-ter-Vehn, Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 3975–3978 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    V. Thakur, N. Kant, Resonant second harmonic generation of chirped pulse laser in plasma. Optik 129, 239–247 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    R.K. Khanna, R.C. Chouhan, Non-linear propagation of laser beam and focusing due to self-action in optical fiber: non-paraxial approach. Pramana J. Phys. 61, 693–706 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    J.F. Lam, B. Lipmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20, 1176 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Department of PhysicsLovely Professional UniversityPhagwaraIndia

Personalised recommendations