Brazilian Journal of Physics

, Volume 49, Issue 1, pp 103–112 | Cite as

Theoretical Investigation on Flavones and Isoflavones-Added Triphenylamine-Based Sensitizers for DSSC Application

  • V. MohankumarEmail author
  • P. Pounraj
  • M. Senthil Pandian
  • P. Ramasamy
General and Applied Physics


Twelve novel dye molecules developed from D-π-A-based triphenylamine (TPA) dyes were studied to evaluate their suitability for dye-sensitized solar cells (DSSC), using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The effects of flavone and isoflavone on triphenylamine-based dyes were studied. B3LYP and CAM-B3LYP density functionals combined with 6-311G(d,p) basis set were chosen for optimization and TDDFT respectively. Optimization geometry, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level, and absorption spectrum were calculated. The electron injection force and light-harvesting efficiency were calculated. We have found HOMO, LUMO energy levels, and electronic absorption spectrum suitable for DSSC application. Based on theoretical calculations, the usefulness of flavones and isoflavones-added triphenylamine dye molecules for DSSC application is examined.


DSSC Density functional theory HOMO-LUMO Organic dyes 


Funding Information

The authors are grateful to DST-SERI, Government of India, for financial support, which is gratefully acknowledged (Sanction No: DST/TM/SERI/2k12/40(G).


  1. 1.
    B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    J.N. Clifford, E. Mart’lnez-Ferrero, A. Viterisi, E. Palomares, Chem. Soc. Rev. 40, 1635–1646 (2011)CrossRefGoogle Scholar
  3. 3.
    T. Dittrich, B. Neumann, H. Tributsch, J. Phys. Chem. C 111, 2265–2269 (2007)CrossRefGoogle Scholar
  4. 4.
    C. Bernini, L. Zani, M. Calamante, G. Reginato, A. Mordini, M. Taddei, R. Basosi, A. Sinicropi, Excited state geometries and vertical emission energies of solvated dyes for DSSC: a PCM/TD-DFT benchmark study. J. Chem. Theory Comput. 10, 3925–3933 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.H. Lee, W. Lee, J. Park, K. Kim, N.G. Park, C. Kim, Chem. Commun. 46, 4887–4889 (2007)CrossRefGoogle Scholar
  6. 6.
    A.A. Hasanein, Y.R. Elmarassi, A.M. Ramadan, TD-DFT study on some triphenylamine-based organic dyes as photosensitizers in DSSCs. J. Theor. Comput. Chem. 13, 1450064 (2014)CrossRefGoogle Scholar
  7. 7.
    N.N. Ghosh, A. Chakraborty, S. Pal, A.P. Sarkar, Modulating triphenylamine-based organic dyes for their potential application in dye-sensitized solar cells: a first principle theoretical study. Phys. Chem. Chem. Phys. 16, 25280–25287 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Akila, N. Muthukumarasamy, S. Agilan, T.K. Mallick, S. Senthilarasu, D. Velauthapillai, Opt. Mater. 58, 76–83 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Narayan, Review: Renew. Sust Energy Rev. 16, 208–215 (2012)Google Scholar
  10. 10.
    Y. Tanaka, N. Sasaki, A. Ohmiya, Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008)CrossRefGoogle Scholar
  11. 11.
    T.S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai, R. Balasundaraprabhu, Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew Energ. 36, 2484–2488 (2011)CrossRefGoogle Scholar
  12. 12.
    I.C. Maurya Neetu, A.K. Gupta, P. Srivastava, L. Bahadur, Callindra haematocephata and Peltophorum pterocarpum flowers as natural sensitizers for TiO2 thin film based dye-sensitized solar cells. Opt. Mater. 60, 270–276 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    I.C. Maurya, P. Srivastava, L. Bahadur, Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer. Opt. Mater. 52, 150–156 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J.L. Eng, R. Hunter, M. Rubilar, B. Pavez, E. Morales, S. Torres, Opt. Mater. 60, 411–417 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M.O. Karakus, I. Koca, O. Er, H. Çetin, Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells. Opt. Mater. 66, 552–558 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Megala, J. Beulah, M. Rajkumar, Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs). J. Comput. Electron. 15, 557–568 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009)Google Scholar
  18. 18.
    A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J. Chem. Phys. 89, 2193–2218 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    G.A. Petersson, M.A. Al-Laham, A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys. 94, 6081–6090 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    T. Yanai, D. Tew, N. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  23. 23.
    A. Rauk, Orbital Interaction Theory of Organic Chemistry (John Wily & Sons, New York, 2001)Google Scholar
  24. 24.
    Z. Zhou, R.G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc. 112, 5720–5724 (1990)CrossRefGoogle Scholar
  25. 25.
    K. Hara, T. Sato, R. Kubota, A. Furube, T. Yoshihara, M. Murai, et al. Adv. Funct. Mater. 15, 246–252 (2005)CrossRefGoogle Scholar
  26. 26.
    R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818–4822 (2004)CrossRefGoogle Scholar
  27. 27.
    J.B. Asbury, Y.Q. Wang, E. Hao, H. Ghosh, T. Lian, Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res.Chem. Intermed. 27, 393–406 (2001)CrossRefGoogle Scholar
  28. 28.
    M.P. Balanay, D.H. Kim, J. Mol, Structures and excitation energies of Zn–tetraarylporphyrin analogues: a theoretical study. Struct. Theochem 910, 20–26 (2009)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  • V. Mohankumar
    • 1
    Email author
  • P. Pounraj
    • 1
  • M. Senthil Pandian
    • 1
  • P. Ramasamy
    • 1
  1. 1.SSN Research CentreSSN College of EngineeringChennaiIndia

Personalised recommendations