Brazilian Journal of Physics

, Volume 49, Issue 1, pp 1–9 | Cite as

The Induced Electron Density Effects of Swift Heavy Ions in Polymethyl Methacrylate

  • Nabil Janan Al-BahnamEmail author
  • R. I. Mahdi
  • Abdullah Ibrahim Aboo Al-Numan
Atomic Physics


In this work, we have derived a new model of dielectric function in the Belkacem-Sigmund (BS) approximation by using the Mermin model procedure. The modified model Mermin-Belkacem-Sigmund (MBS) takes into account the Penn gap of the material and the charge states of the projectile. We compare energy loss function with the available experimental optical data and other previous theoretical models. The Bethe f-sum rule was applied and the error ratio did not exceed 1.85%. Herein, the results remained consistent with other published research papers. The MBS model was utilized to calculate the induced electron density fluctuation due to heavy ion motion in polymethyl methacrylate (PMMA) polymers. It was found that the induced electron density fluctuation decreases gradually with increasing particle velocity higher than Bohr velocity and the swift proton transfer less energy to the polymer than slow protons. The wake effects of induced electron density fluctuation around the maximum peak position are also reported in this paper.


Polymethyl methacrylate Electron density fluctuation Energy loss function Quantum dielectric function Drude-Lorenz model 



The authors express thanks to Prof. Dr. Peter Sigmund, Department of Physics-Chemistry and Pharmacy, University of Southern Denmark (SDU) for fruitful notes, discussions, and support. The advice of Prof. Dr. Khalid A. Ahmad, Department of Physics, College of Science, AL-AL-Mustansiriyah University, Iraq, is gratefully acknowledged.


  1. 1.
    M. Prall, M. Durante, T. Berger, B. Przybyla, C. Graeff, P.M. Lang, C. LaTessa, L. Shestov, P. Simoniello, C. Danly, F. Mariam, F. Merrill, P. Nedrow, C. Wilde, D. Varentsov, High-energy proton imaging for biomedical applications. Sci. Rep. 6, 27651 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Yao, P. Santhana Raman, J.A. van Kan, Orthogonal and fine lithographic structures attained from the next generation proton beam writing facility. Microsyst. Technol. 20, 2065–2069 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Mohapatra, S. Shaw, D. Mendivelso-Perez, J.M. Bobbitt, T.F. Silva, F. Naab, B. Yuan, X. Tian, E.A. Smith, L. Cademartiri, Calcination does not remove all carbon from colloidal nanocrystal assemblies. Nat. Commun. 8, 2038 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301–071370 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R.I. Mahdi, N.J. Al-Bahnam, A.I. Abbo, J.K. Hmood, W.H.A. Majid, J Alloys Compd 688(Part A), 77–87 (2016)CrossRefGoogle Scholar
  6. 6.
    R.I. Mahdi, W.C. Gan, N.A. Halim, T.S. Velayutham, W.H.A. Majid, Ceram. Int. 41, 13836–13843 (2015)CrossRefGoogle Scholar
  7. 7.
    R.I. Mahdi, W.H.A. Majid, Piezoelectric and pyroelectric properties of BNT-base ternary lead-free ceramic–polymer nanocomposites under different poling conditions. RSC Adv. 6, 81296–81309 (2016)CrossRefGoogle Scholar
  8. 8.
    A.C.F. Hoole, M.E. Welland, A.N. Broers, Negative PMMA as a high-resolution resist - the limits and possibilities. Semicond. Sci. Technol. 12, 1166–1170 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    I. Zailer, J.E.F. Frost, V. Chabasseur-Molyneux, C.J.B. Ford, M. Pepper, Crosslinked PMMA as a high-resolution negative resist for electron beam lithography and applications for physics of low-dimensional structures. Semicond. Sci. Technol. 11, 1235–1238 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    A.S. Gangnaik, Y.M. Georgiev, J.D. Holmes, New generation electron beam resists: a review. Chem. Mater. 29, 1898–1917 (2017)CrossRefGoogle Scholar
  11. 11.
    R.G.-M. Isabel Abril, P.D. Vera, I. Kyriakou, D. Emfietzoglou, C. Champion, C.C. Montanari, J.E. Miraglia, Advances in Quantum Chemistry, 1 ed. (Academic Press, Elsevier, 2013)Google Scholar
  12. 12.
    S. Yajnik, Proton Beam Therapy: How Protons are Revolutionizing Cancer Treatment (Springer, New York, 2013)CrossRefGoogle Scholar
  13. 13.
    J.S. Williams, R.G. Elliman, M.C. Ridgway, Ion Beam Modification of Materials (Elsevier Science, 2012)Google Scholar
  14. 14.
    E.H. Lee, G.R. Rao, L.K. Mansur, LET effect on cross-linking and scission mechanisms of PMMA during irradiation. Radiat. Phys. Chem. 55, 293–305 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    F. Watt, M.B. Breese, A.A. Bettiol, J.A. van Kan, Proton beam writing. Mater. Today 10, 20–29 (2007)CrossRefGoogle Scholar
  16. 16.
    W.M. Lau, Ion beam techniques for functionalization of polymer surfaces. Nucl. Instr. and Meth. B 131, 341–349 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    O.H. Crawford, J. Dorado, F. Flores, Nonlinear effects in interactions of swift ions with solids. Nucl. Instr. and Meth. B 96, 610–618 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    P.M. Echenique, F. Flores, R.H. Ritchie, in Solid State Physics, ed. by E. Henry, T. David. Dynamic screening of ions in condensed matter (Academic Press, 1990), pp. 229–308Google Scholar
  19. 19.
    A. Faibis, R. Kaim, I. Plesser, Z. Vager, Electronic polarization in solids probed by dissociation of fast molecular ions. Nucl. Inst. Methods 170, 99–104 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk 18, 1–71 (1948)Google Scholar
  21. 21.
    Z. Vager, D.S. Gemmell, Polarization induced in a solid by the passage of fast charged particles. Phys. Rev. Lett. 37, 1352–1354 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    P.M. Echenique, R.H. Ritchie, W. Brandt, Spatial excitation patterns induced by swift ions in condensed matter. Phys. Rev. B 20, 2567–2580 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    W. You-Nain, T.-C. Ma, Phys. Rev. B 52, 16395–16399 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    A. Belkacem, P. Sigmund, Stopping power and energy loss spectrum of a dense medium of bound electrons. Nucl. Instr. Meth. B 48, 29–33 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    N.D. Mermin, Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 2362–2363 (1970)ADSCrossRefGoogle Scholar
  26. 26.
    A.C. Ferrari, A. Libassi, B.K. Tanner, V. Stolojan, J. Yuan, L.M. Brown, S.E. Rodil, B. Kleinsorge, J. Robertson, Density,sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B 62, 11089–11103 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    W. Brandt, M. Kitagawa, Effective stopping-power charges of swift ions in condensed matter. Phys. Rev. B 25, 5631–5637 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    I. Abril, C.D. Denton, P. de Vera, I. Kyriakou, D. Emfietzoglou, R. Garcia-Molina, Nucl. Instr. Meth. B 268, 1763–1767 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    H.R. Verma, Atomic and Nuclear Analytical Methods: XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques (Springer, Berlin, 2007)Google Scholar
  30. 30.
    V.M.d.S. Santana, D. David, J.S. de Almeida, C. Godet, Photoelectron energy loss in Al(002) revisited: retrieval of the single plasmon loss energy distribution by a Fourier transform method. Braz. J. Phys. 48, 215–226 (2018)Google Scholar
  31. 31.
    J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 28, 1–56 (1954)MathSciNetGoogle Scholar
  32. 32.
    K.L. Kliewer, R. Fuchs, Lindhard dielectric functions with a finite electron lifetime. Phys. Rev. 181, 552–558 (1969)ADSCrossRefGoogle Scholar
  33. 33.
    L. Calliari, M. Dapor, G. Garberoglio, S. Fanchenko, Momentum transfer dependence of reflection electron energy loss spectra: theory and experiment. Surf. Interface Anal. 46, 340–349 (2014)CrossRefGoogle Scholar
  34. 34.
    K. Sturm, Electron energy loss in simple metals and semiconductors. Adv. Phys. 31, 1–64 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    M. Dapor, Energy loss of fast electrons impinging upon polymethylmethacrylate. Nucl. Instr. and Meth. B 352, 190–194 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    C.S. Warke, K. Griepenkerl, W. Greiner, Swift ion induced wake potential in two component plasma: low energy electron emission and projectile atomic transitions. Phys A Stat Mech Appl 175, 248–262 (1991)CrossRefGoogle Scholar
  37. 37.
    H. Esbensen, P. Sigmund, Barkas effect in a dense medium: stopping power and wake field. Ann. Phys. 201, 152–192 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    G. Velarde, Y. Ronen, J.M. Martinez-Val, Nuclear Fusion by Inertial Confinement: a Comprehensive Treatise (Taylor & Francis, 1992)Google Scholar
  39. 39.
    T. Kaneko, Inelastic energy loss ofH2+andH3+ions correlated with molecular orientation. Phys. Rev. A 51, 535–547 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    P. Grande, G. Schiwietz, Code available from:< Accessed 20 July 2015
  41. 41.
    S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Calculated energy loss of swift He, Li, B, and N ions inSiO2,Al2O3, andZrO2. Phys. Rev. A 72, 052902 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    W. Brandt, Effective charges of ions and the stopping power of dense media. Nucl Inst Methods Phys Res 194, 13–19 (1982)ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Ritsko, L.J. Brillson, R.W. Bigelow, T.J. Fabish, Electron energy loss spectroscopy and the optical properties of polymethylmethacrylate from 1 to 300 eV. J. Chem. Phys. 69, 3931–3939 (1978)ADSCrossRefGoogle Scholar
  44. 44.
    N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Phys. Pol. A 116, 585–587 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    M. Vos, P.L. Grande, Simple model dielectric functions for insulators. J. Phys. Chem. Solids 104, 192–197 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    N. Watanabe, H. Hayashi, Y. Udagawa, Inelastic X-ray scattering study on molecular liquids. J. Phys. Chem. Solids 61, 407–409 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    N. Watanabe, H. Hayashi, Y. Udagawa, Bethe surface of liquid water determined by inelastic X-ray scattering spectroscopy and electron correlation effects. Bull. Chem. Soc. Jpn. 70, 719–726 (1997)CrossRefGoogle Scholar
  48. 48.
    G. Garcia Gómez-Tejedor, D.M.C. Fuss, Radiation Damage in Biomolecular Systems, 1 st ed. (Springer, Dordrecht, 2012)CrossRefGoogle Scholar
  49. 49.
    P.d. Vera, I. Abril, R. Garcia-Molina, J. Appl. Phys. 109, 094901 (2011)Google Scholar
  50. 50.
    D. Emfietzoglou, I. Kyriakou, I. Abril, R. Garcia-Molina, I.D. Petsalakis, H. Nikjoo, A. Pathak, Electron inelastic mean free paths in biological matter based on dielectric theory and local-field corrections. Nucl. Instr. Meth. B 267, 45–52 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    A. Mazarro, P.M. Echenique, R.H. Ritchie, Charged-particle wake in the random-phase approximation. Phys. Rev. B 27, 4117–4128 (1983)ADSCrossRefGoogle Scholar
  52. 52.
    N.J. Al-Bahnam, K.A. Ahmad, A.I. Aboo Al-Numan, Phys. Lett. A 381, 616–622 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    E. Testa, D. Dauvergne, A. Bräuning-Demian, F. Bosch, H. Bräuning, M. Chevallier, C. Cohen, A. Gumberidze, S. Hagmann, A. L’Hoir, R. Kirsch, C. Kozhuharov, D. Liesen, P.H. Mokler, J.C. Poizat, C. Ray, J.P. Rozet, T. Stöhlker, S. Toleikis, M. Toulemonde, P. Verma, Electron gas polarization effect induced by heavy H-like ions of moderate velocities channeled in a silicon crystal. Nucl. Instr. and Meth. B 245, 47–51 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    H.J. Frischkorn, K.O. Groeneveld, P. Koschar, R. Latz, J. Schader, Observation of heavy-ion-induced wake-potential interference effects. Phys. Rev. Lett. 49, 1671–1674 (1982)ADSCrossRefGoogle Scholar
  55. 55.
    I. Abril, R. Garcia-Molina, C.D. Denton, F.J. Pérez-Pérez, N.R. Arista, Dielectric description of wakes and stopping powers in solids. Phys. Rev. A 58, 357–366 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    H. Winter, J. Burgdörfer, Slow Heavy-Particle Induced Electron Emission from Solid Surfaces (Springer, Berlin, 2007)Google Scholar
  57. 57.
    P. Apell, J Phys B Atomic Mol Optical Phys 21, 2665–2673 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Department of physics, College of Science for WomenUniversity of BaghdadBaghdadIraq
  2. 2.Nanotechnology and Advanced Materials Research CentreUniversity of Technology, BaghdadBaghdadIraq

Personalised recommendations