Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

Abstract

Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Notes

  1. 1.

    The Brain is wider than the Sky,

    For, put them side by side,

    The one the other will include

    With ease, and you beside.

    Emily Dickinson, Complete Poems. 1924 (1830-1886).

References

  1. 1.

    W. Gerstner, W. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002)

  2. 2.

    O. Sporns, G. Tononi, R. Kötter, PLoS Comput. Biol. 1(4), e42 (2005)

  3. 3.

    R.L. Viana, F.S. Borges, K.C. Iarosz, A.M. Batista, S.R. Lopes, I.L. Caldas, Commun. Nonlinear Sci. Numer. Simul. 19(1), 164 (2014)

  4. 4.

    F.S. Borges, E.L. Lameu, A.M. Batista, K.C. Iarosz, M.S. Baptista, R.L. Viana, Phys. A 430, 236 (2015)

  5. 5.

    S. Wolfram, Rev. Mod. Phys. 55(3), 601 (1983)

  6. 6.

    C.A.S. Batista, E.L. Lameu, A.M. Batista, S.R. Lopes, T. Pereira, G. Zamora-López, J. Kurths, R.L. Viana, Phys. Rev. E 86, 016211 (2012)

  7. 7.

    E.L. Lameu, F.S. Borges, R.R. Borges, K.C. Iarosz, I.L. Caldas, A.M. Batista, R.L. Viana, J. Kurths. Chaos. 26, 043107 (2016)

  8. 8.

    E.L. Lameu, F.S. Borges, R.R. Borges, A.M. Batista, M.S. Baptista, R.L. Viana, Commun. Nonlinear Sci. Numer. Simul. 34, 45 (2016)

  9. 9.

    M. Girardi-Schappo, M.H.R. Tragtenberg, O. Kinouchi, J. Neurosci. Meth. 220, 116 (2013)

  10. 10.

    M. Girardi-Schappo, G.S. Bortolotto, R.V. Stenzinger, J.J. Gonsalves, M.H.R. Tragtenberg, PLoS ONE 12(3), e0174621 (2017)

  11. 11.

    B. Ibarz, J.M. Casado, M.A.F. Sanjuán, Phys. Rep. 501, 1 (2011)

  12. 12.

    L.F. Abbott, Brain Res. Bull. 50, 303 (1999)

  13. 13.

    M.I. Rabinovich, P. Varona, A.I. Selverston, H.D.I. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006)

  14. 14.

    C.A.S. Batista, R.L. Viana, S.R. Lopes, A.M. Batista, Phys. A 410, 628 (2014)

  15. 15.

    M.S. Baptista, F.M. Kakmeni, C. Grebogi, Phys. Rev. E 82, 036203 (2010)

  16. 16.

    L. Lapicque, J. Physiol, Pathol. Gen. 9, 620 (1907)

  17. 17.

    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

  18. 18.

    L.J. Hindmarsh, R.M. Rose, Lond. Proc. R. Soc. B 221, 87 (1984)

  19. 19.

    M.S. Baptista, J. Kurths, Phys. Rev. E 77, 026205 (2008)

  20. 20.

    M.S. Baptista, J.X. de Carvalho, M.S. Hussein, PloS ONE 3, e3479 (2008)

  21. 21.

    C.G. Antonopoulos, S. Srivastava, S.S. Pinto, M.S. Baptista, PLoS Comput. Biol. 11, e1004372 (2015)

  22. 22.

    P. Uhlhaas, G. Pipa, B. Lima, L. Melloni, S. Neuenschwander, D. Nikolić, W. Singer, Front. Integr. Neurosci. 3, 17 (2009)

  23. 23.

    L. Melloni, C. Molina, M. Pena, D. Torres, W. Singer, E. Rodriguez, J. Neurosci. 27(11), 2858 (2007)

  24. 24.

    F.S. Borges, P.R. Protachevicz, E.L. Lameu, R.C. Bonetti, K.C. Iarosz, I.L. Caldas, M.S. Baptista, A.M. Batista, Neural Netw. 90, 1 (2017)

  25. 25.

    J. Fell, N. Axmacher, Nat Rev. Neurosci. 12, 105 (2011)

  26. 26.

    L.L. Rubchinsky, C. Park, R.M. Worth, Nonlinear Dyn. 68, 329 (2012)

  27. 27.

    E.L. Lameu, F.S. Borges, R.R. Borges, K.C. Iarosz, I.L. Caldas, A.M. Batista, R.L. Viana, J. Kurths. Chaos. 26, 043107 (2016)

  28. 28.

    E.L. Bennett, M.C. Diamond, D. Krech, M.R. Rosenzweig, Science. 146, 610 (1964)

  29. 29.

    W. James, The Principles of Psychology (Henry Holt and Company, New York, 1890)

  30. 30.

    K.S. Lashley, Psychol. Bull. 30, 237 (1923)

  31. 31.

    E.L. Bennett, M.C. Diamond, D. Krech, M.R. Rosenzweig, Science. 146, 610 (1964)

  32. 32.

    M.C. Diamond, D. Krech, M.R. Rosenzweig, J. Comp. Neurol. 123, 111 (1964)

  33. 33.

    D.O. Hebb, The Organization of Behavior (Wiley, New York, 1949)

  34. 34.

    W. Gerstner, H. Sprekeler, G. Deco, Science. 338, 60 (2012)

  35. 35.

    H. Markram, W. Gerstner, P.J. Sjostrom, Front. Synaptic Neurosci. 4, 1 (2012)

  36. 36.

    R.R. Borges, F.S. Borges, E.L. Lameu, A.M. Batista, K.C. Iarosz, I.L. Caldas, R.L. Viana, M.A.F. Sanjuán, Commun. Nonlinear Sci. Numer. Simul. 34, 12 (2016)

  37. 37.

    G.-Q. Bi, M.-M. Poo, J. Neurosci. 18(24), 10464 (1998)

  38. 38.

    J.S. Haas, T. Nowotny, H.D.I. Abarbanel, J. Neurophysiol. 96, 3305 (2006)

  39. 39.

    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell, 4th ed (Garland Science, New York, 2002)

  40. 40.

    M.A. Arbib, The Handbook of Brain Theory and Neural Networks (The MIT Press, Cambridge, 2002)

  41. 41.

    E. Gouaux, R. Mackinnon, Science. 310(5), 344 (2009)

  42. 42.

    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

  43. 43.

    G. Deco, A. Buehlmann, T. Masquelier, E. Hugues, Front. Hum. Neurosci. 5, 1 (2011)

  44. 44.

    V.O. Popovych, S. Yanchuk, P.A. Tass, Sci. Rep. 3, 2926 (2013)

  45. 45.

    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

  46. 46.

    W. Gerstner, Front. Synaptic Neurosci. 2, 1 (2010)

  47. 47.

    D.E. Feldman, Neuron. 75, 556 (2012)

  48. 48.

    T.V. Bliss, T. Lomo. J. Physiol. 232, 331 (1973)

  49. 49.

    S. Song, K.D. Miller, L.F. Abbott, Nat. Neurosci. 3, 919 (2000)

  50. 50.

    W. Gerstner, R. Kempter, J.L. van Hemmen, Nature 383, 76 (1996)

  51. 51.

    H. Markram, B. Sakmann, Soc. Neurosci. Abstr. 21, 1 (2007)

  52. 52.

    H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Science 275, 213 (1997)

  53. 53.

    Y. Frégnac, M. Pananceau, A. René, N. Huguet, O. Marre, M. Levy, D.E. Schulz, Front. Synaptic Neurosci. 2, 73 (2010)

  54. 54.

    K.A. Buchanan, J.R. Mellor, Front Synaptic Neurosci. 2, 94 (2010)

  55. 55.

    C.R. Noback, N.L. Strominger, R.J. Demarest, D.A. Ruggiero, The Human Nervous Systems: Structure and Function, 6th ed (Humana Press, Totowa, NJ, 2005)

  56. 56.

    E.K. Towlson, E. Vértes, S.E. Anhert, W.R. Schafer, E.T. Bullmore, J. Neurosc. 33, 6380 (2013)

  57. 57.

    P.E. Vértes, A. Alexander-Bloch, E.T. Bullmore, Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130531 (2014)

Download references

Acknowledgements

This work was possible by partial financial support from the following Brazilian government agencies: CNPq (154705/2016-0, 311467/2014-8), CAPES, Fundação Araucária, and São Paulo Research Foundation (processes FAPESP 2011/19296-1, 2015/07311-7, 2016/16148-5, 2016/23398-8, 2015/50122-0). Research supported by grant 2015/50122-0 São Paulo Research Foundation (FAPESP) and DFG-IRTG 1740/2.

Author information

Correspondence to Kelly C. Iarosz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borges, R.R., Borges, F.S., Lameu, E.L. et al. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks. Braz J Phys 47, 678–688 (2017). https://doi.org/10.1007/s13538-017-0529-5

Download citation

Keywords

  • Neuronal network
  • Plasticity
  • Synchronisation