Brazilian Journal of Physics

, Volume 47, Issue 5, pp 552–560 | Cite as

Geomagnetically Induced Currents: Principles

  • Denny M. Oliveira
  • Chigomezyo M. Ngwira
General and Applied Physics


The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth’s magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13–14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.


Solar-terrestrial connections Geospace environment Geomagnetic storms Geomagnetically induced currents 



Dr. Denny Oliveira acknowledges NASA for the financial support provided by grant NNH13ZDA001N-HSR to UMBC/GPHI. Dr. Chigomezyo Ngwira was supported by NASA Grant NNG11PL10A 670.157 to CUA/IACS. The authors very kindly thank an anonimous reviewer for carefully evaluating this manuscript.


  1. 1.
    B. O. Adebesin, A. Pulkkinen, C. M. Ngwira, The interplanetary and magnetospheric causes of extreme dB/dt at equatorial locations. Geophys. Res. Lett. 43(22), 11,501–11,509 (2016). CrossRefGoogle Scholar
  2. 2.
    J. Allen, H. Sauer, L. Frank, P. Reiff, Effects of the March 1989 solar activity. Eos Trans. AGU. 70 (46), 1479–1488 (1989). ADSCrossRefGoogle Scholar
  3. 3.
    T. Araki, A. Shinbori, Relationship between solar wind dynamic pressure and amplitude of geomagnetic sudden commencement (SC). Earth Planets Space. 68(9), 1–7 (2016). Google Scholar
  4. 4.
    C. S. Barbosa, G. A. Hartmann, K. J. Pinheiro, Numerical modeling of geomagnetically induced currents in a Brazilian transmission line. Adv. Space Res. 55(4) (2015).
  5. 5.
    L. Bolduc, GIC observations and studies in the hydro-Québec power system. J. Atmos. Sol. Terr. Phys. 64 (16), 1793–1802 (2002). ADSCrossRefGoogle Scholar
  6. 6.
    D. H. Boteler, In Space Weather, Geophysical Monograph Series, ed. by P. Song, H.J. Singer, G.L. Siscoe. Space weather effects on power systems, Vol. 125 (American Geo457 physical Union, Washington, DC, 2001), pp. 347-352.
  7. 7.
    L. Cagniard, Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics. 18(3), 605–635 (1953). ADSCrossRefGoogle Scholar
  8. 8.
    B. A. Carter, E. Yizengaw, R. Pradipta, A. J. Halford, R. Norman, K. Zhang, Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys. Res. Lett. 42(16), 6554–6559 (2015). ADSCrossRefGoogle Scholar
  9. 9.
    B. A. Carter, E. Yizengaw, R. Pradipta, J. M. Weygand, M. Piersanti, A. Pulkkinen, M. B. Moldwin, R. Norman, K. Zhang, Geomagnetically induced currents around the world during the March 17, 2015 storm. J. Geophys. Res. Space Phys. (2016).
  10. 10.
    J. W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47–48 (1961). ADSCrossRefGoogle Scholar
  11. 11.
    Y. Ebihara, M. -C. Fok, S. Sazykin, M. F. Thomsen, M. R. Hairston, D. S. Evans, F. J. Rich, M. Ejiri, Ring current and the magnetosphere-ionosphere coupling during the superstorm of 20 November 2003. J. Geophys. Res. 110(A9) (2005).
  12. 12.
    E. Echer, W. D. Gonzalez, F. L. Guarnieri, A. D. Lago, L. E. A. Vieira, Introduction to space weather. Adv. Space Res. 35(5), 855–865 (2005). ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Erinmez, J. G. Kappenman, W. A. Radasky, Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Sol. Terr. Phys. 63(5–6), 743–756 (2002). ADSCrossRefGoogle Scholar
  14. 14.
    R. A. D. Fiori, D. H. Boteler, D. M. Gillies, Assessment of gic risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather. 12(1), 76–91 (2014). ADSCrossRefGoogle Scholar
  15. 15.
    C. Gaunt, G. Coetzee, in Power Tech, 2007 IEEE Lausanne. Transformer Failures in Regions Incorrectly Considered to have Low GIC-Risk(Switzerland, Lausanne, 2007) pp. 807–812.
  16. 16.
    W. D. Gonzalez, J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, V. M. Vasyliūnas, What is a geomagnetic storm. J. Geophys. Res. 99(A4), 5771–5792 (1994). ADSCrossRefGoogle Scholar
  17. 17.
    W. D. Gonzalez, B. T. Tsurutani, A. L. Clúa de Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88(3-4), 529–562 (1999). ADSCrossRefGoogle Scholar
  18. 18.
    W. D. Gonzalez, E. N. Parker, F. S. Mozer, V. M. Vasyliūnas, P. L. Pritchett, H. Karimabadi, P. A. Cassak, J. D. Scudder, M. Yamada, R. M. Kulsrud, D. K. Less, in Magnetic Reconnection, ed. by W.D. Gonzalez, E.N. Parker. Fundamental Concepts Associated with Magnetic Reconnection, Vol. 427 (Springer International Publishing, Cham, Switzerland, 2016), pp. 132.
  19. 19.
    J. T. Gosling, In Coronal Mass Ejections, Geophysical Monograph Series, ed. by N. Crooker, J.A. Jocelyn, J. Feynman. Coronal mass ejections: an overview, Vol. 99 (American Geophysical Union, Washington, DC, 1997), pp. 9-16.
  20. 20.
    R. A. Gummow, P. Eng, GIC effects on pipeline corrosion and corrosion control systems. J. Atmos. Sol. Terr. Phys. 64(16), 1755–1764 (2002). ADSCrossRefGoogle Scholar
  21. 21.
    T. Iyemori, Storm-time magnetospheric currents inferred from mid–latitude geomagnetic field variations. J. Geomagn. Geoelectr. 42(11), 1249–1265 (1990). ADSCrossRefGoogle Scholar
  22. 22.
    S. Jonas, E. McCarron, Recent U.S. policy developments addressing the effects of geomagnetically induced currents. Space Weather 13 (2015).
  23. 23.
    J. Kappenman. Geomagnetic Storms and Their Impacts on the US Power Grid, Tech. Rep. Metatech Corp. (Goleta, California, 2010)Google Scholar
  24. 24.
    J. G. Kappenman, in Space Weather, Geophysical Monograph Series, ed. by P. Song, H.J. Singer, G.L. Siscoe. Advanced Geomagnetic Storm Forecasting for the Electric Power Industry, Vol. 125 (American Geophysical Union, Washington, D.C, 2001), pp. 353357. (2001)
  25. 25.
    J. G. Kappenman, Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations. Space Weather 1(3) (2003).
  26. 26.
    J. G. Kappenman, An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather. 3(8), 1–21 (2005). CrossRefGoogle Scholar
  27. 27.
    G.V. Khazanov. Space Weather Fundamentals (CRC Press, Boca Raton, FL, 2016)Google Scholar
  28. 28.
    G. S. Lakhina, B. T. Tsurutani, Geomagnetic storms: historical perspective to modern view. Geosci. Lett. 3(5), 1–11 (2016). ADSGoogle Scholar
  29. 29.
    L. J. Lanzerotti, In Space Weather, Geophysical Monograph Series, ed. by P. Song, H.J. Singer, G.L. Siscoe. Space Weather Effects on Technologies, Vol. 125 (American Geophysical Union, Washington, D.C, 2001), pp. 1122. (2001)
  30. 30.
    M. Lehtinen, R. Pirjola, Currents produced in earthed conductor networks by geomagnetically-induced electric fields. Ann. Geophys. 3(4), 479–484 (1985)Google Scholar
  31. 31.
    X. Li, M. Temerin, B. T. Tsurutani, S. Alex, Modeling of 1–2 September 1859 super magnetic storm. Adv. Space Res. 38, 273–279 (2006). ADSCrossRefGoogle Scholar
  32. 32.
    R. E. Lopez, D. N. Baker, J. Allen, Sun unleashes Halloween storm. Eos Trans. AGU. 85(11), 105–108 (2004). ADSCrossRefGoogle Scholar
  33. 33.
    N. Lugaz, C. J. Farrugia, C. W. Smith, K. Paulson, Shocks inside CMEs: a survey of properties from 1997 to 2006. J. Geophys. Res. Space Phys. 120(4), 2409–2427 (2015). ADSCrossRefGoogle Scholar
  34. 34.
    N. Lugaz, C. J. Farrugia, C. -L. Huang, H. E. Spence, Extreme geomagnetic disturbances due to shocks within CMEs. Geophys. Res. Lett. 42(12), 4694–4701 (2015). ADSCrossRefGoogle Scholar
  35. 35.
    N. Lugaz, C. J. Farrugia, R. M. Winslow, N. Al-Haddad, E. K. J. Kilpua, P. Riley, Factors affecting the geo-effectiveness of shocks and sheaths at 1 AU. J. Geophys. Res. Space Phys. 120(11), 10,861–10,879 (2016). CrossRefGoogle Scholar
  36. 36.
    T. S. Molinski, Why utilities respect geomagnetically induced currents. J. Atmos. Sol. Terr. Phys. 64(16), 1765–1778 (2002). ADSCrossRefGoogle Scholar
  37. 37.
    T. S. Molinski, W. E. Feero, B. L. Damsky, Shielding grids from solar storms. IEEE Spectr. 37(11), 55–60 (2000). CrossRefGoogle Scholar
  38. 38.
    C. M. Ngwira, A. Pulkkinen, L. -A. McKinnell, P. J. Cilliers, Improved modeling of geomagnetically induced currents in the South African power network. Space Weather 6(11) (2008).  10.1029/2008SW000408
  39. 39.
    C. M. Ngwira, L. -A. McKinnell, P. J. Cilliers, A. J. Coster, Ionospheric observations during the geomagnetic storm events on 24–27 July 2004: long-duration positive storm effects. J. Geophys. Res. 117(A9) (2012).
  40. 40.
    C. M. Ngwira, A. Pulkkinen, F. D. Wilder, G. Crowley, Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Space Weather. 11(3), 121–131 (2013). ADSCrossRefGoogle Scholar
  41. 41.
    C. M. Ngwira, A. Pulkkinen, M. M. Kuznetsova, A. Glocer, Modeling extreme “Carrington-type” space weather events using three-dimensional global MHD simulations. J. Geophys. Res. Space Phys. (2014).
  42. 42.
    C. M. Ngwira, A. A. Pulkkinen, E. Bernabeu, J. Eichner, A. Viljanen, G. Crowley, Characteristics of extreme geoelectric fields and their possible causes: localized peak enhancements. Geophys. Res. Lett. 42(17), 6916–6921 (2015). ADSCrossRefGoogle Scholar
  43. 43.
    D. Oliveira, Ionosphere-magnetosphere coupling and field-aligned currents. Revista Brasileira de Ensino de Física. 36(1), 1305 (2014). CrossRefGoogle Scholar
  44. 44.
    D. M. Oliveira, Magnetohydrodynamic shocks in the interplanetary space: a theoretical review. Braz. J. Phys. 47(1), 81–95 (2017). ADSCrossRefGoogle Scholar
  45. 45.
    D. M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness. J. Geophys. Res. Space Phys. 119(10), 8188–8201 (2014). ADSCrossRefGoogle Scholar
  46. 46.
    D. M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness: a statistical study. J. Geophys. Res. Space Phys. 120(6), 4313–4323 (2015). ADSCrossRefGoogle Scholar
  47. 47.
    D. M. Oliveira, J. Raeder, B. T. Tsurutani, J. W. Gjerloev, Effects of interplanetary shock inclinations on nightside auroral power intensity. Braz. J. Phys. 46(1), 97–104 (2016). ADSCrossRefGoogle Scholar
  48. 48.
    D. M. Oliveira, E. Zesta, P. W. Schuck, H. K. Connor, E. K. Sutton, in Proceedings of the 15 th International Ionospheric Effects Symposium, ed. by K.M. Groves, M.S. Magoun. Ionosphere-thermosphere global time response to geomagnetic storms, (Alexandria, VA, 2017)Google Scholar
  49. 49.
    R. Pirjola, Electromagnetic induction in the Earth by a plane wave or by fields of line currents harmonic in time and space. Geophysica. 18(1–2), 1–161 (1982)Google Scholar
  50. 50.
    R. Pirjola, Geomagnetically induced currents during magnetic storms. IEEE Trans. Plasma Sci. 28(6), 1867–1873 (2000). ADSCrossRefGoogle Scholar
  51. 51.
    R. Pirjola, Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys. 23(1), 71–90 (2002). ADSCrossRefGoogle Scholar
  52. 52.
    P. R. Price, Geomagnetically induced current effects on transformers. IEEE Power Engineering Review. 22 (6), 62–62 (2002). CrossRefGoogle Scholar
  53. 53.
    A. Pulkkinen, S. Lindahl, A. Viljanen, R. Pirjola, Geomagnetic storm of 29–31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather 3(8) (2005).
  54. 54.
    A. Pulkkinen, E. Bernabeu, J. Eichner, C. Beggan, A. W. P. Thomson, Generation of 100-year geomagnetically induced current scenarios. Space Weather 10(4) (2012).
  55. 55.
    P. Riley, J. J. Love, Extreme geomagnetic storms: probabilistic forecasts and their uncertainties. Space Weather (2017).
  56. 56.
    C. Russell, The solar wind interaction with the Earth’s magnetosphere: a tutorial. IEEE Trans. Plasma Sci. 28(6), 1818–1830 (2000). ADSCrossRefGoogle Scholar
  57. 57.
    C. T. Russell, in Space Weather, Geophysical Monograph Series, ed. by P. Song, H.J. Singer, G.L. Siscoe. Solar wind and interplanetary magnetic field: a tutorial (American Geophysical Union, Washington, D.C, 2001), p. 125.
  58. 58.
    C. J. Schrijver, R. Dobbins, W. Murtagh, S.M. Petrinec, Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather (2014).
  59. 59.
    C. Shen, Y. Chi, Y. Wang, M. Xu, S. Wang, Statistical comparison of the ICME’s geoeffectiveness of different types and different solar phases from 1995 to 2014. J. Geophys. Res. Space Phys. 122 (2017).
  60. 60.
    Y. Shi, E. Zesta, H. K. Connor, Y. -J. Su, E. K. Sutton, C. Y. Huang, D. M. Ober, C. Christodoulo, S. Delay, D.M. Oliveira, High-latitude thermosphere neutral density response to solar wind dynamic pressure enhancement. J. Geophys. Res. Space Phys. submitted (2017)Google Scholar
  61. 61.
    V. M. Souza, D. Koga, W. D. Gonzalez, F. R. Cardoso, Observational aspects of magnetic reconnection at the Earth’s magnetosphere. Braz. J. Phys. 47(4), 447–459 (2017). ADSCrossRefGoogle Scholar
  62. 62.
    B. Tsurutani, W. D. Gonzalez, G. S. Lakhina, S. Alex, The extreme magnetic storm of 1—2 September 1859. J. Geophys. Res. 108(A7) (2003).
  63. 63.
    B. T. Tsurutani, G. S. Lakhina, An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys. Res. Lett. 41, 287–292 (2014). ADSCrossRefGoogle Scholar
  64. 64.
    B. T. Tsurutani, D. L. Judge, F. L. Guarnieri, P. Gangopadhyay, A. R. Jones, J. Nuttall, G. A. Zambon, L. Didkovsky, A. J. Mannucci, B. Iijima, R. R. Meier, T. J. Immel, T. N. Woods, S. Prasad, L. Floyd, J. Huba, S. C. Solomon, P. Straus, R. Viereck, The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the Bastille Day event. Geophys. Res. Lett. 32(3) (2005).
  65. 65.
    A. Viljanen, R. Pitjola, Geomagnetically induced currents in the Finnish high-voltage power system. Surv. Geophys. 15(4), 383–408 (1994). ADSCrossRefGoogle Scholar
  66. 66.
    A. Viljanen, A. Pulkkinen, R. Pirjola, K. Pajunpää, P. Posio, A. Koistinen, Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weather 4(10) (2006).
  67. 67.
    C. Wang, J. B. Liu, H. Li, Z. H. Huang, J. D. Richardson, J. R. Kan, Geospace magnetic field responses to interplanetary shocks. J. Geophys. Res. 114(A5) (2009).
  68. 68.
    J. J. Zhang, C. Wang, T. R. Sun, C. M. Liu, K. R. Wang, GIC Due to storm sudden commencement in low-latitude high-voltage power network in China: observation and simulation. Space Weather. 13(10), 643–655 (2015). ADSCrossRefGoogle Scholar
  69. 69.
    J. J. Zhang, C. Wang, T. R. Sun, Y. D. Liu, Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks. Space Weather. 14(3), 259–270 (2016). ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Goddard Planetary Heliophysics InstituteUniversity of Maryland Baltimore CountyBaltimoreUSA
  3. 3.Department of PhysicsCatholic University of AmericaWashingtonUSA

Personalised recommendations