Brazilian Journal of Physics

, Volume 47, Issue 1, pp 19–25 | Cite as

Nanoscale Structure of Urethane/Urea Elastomeric Films

  • Dennys Reis
  • Ana C. Trindade
  • Maria Helena Godinho
  • Laura C. Silva
  • Maria do Carmo Gonçalves
  • Antônio M. Figueiredo NetoEmail author
Condensed Matter


The nanostructure of urethane/urea elastomeric membranes was investigated by small-angle X-ray scattering (SAXS) in order to establish relationships between their structure and mechanical properties. The networks were made up of polypropylene oxide (PPO) and polybutadiene (PB) segments. The structural differences were investigated in two types of membranes with the same composition but with different thermal treatment after casting. Type I was cured at 70–80 °C and type II at 20 °C. Both membranes showed similar phase separation by TEM, with nanodomains rich in PB or PPO and 25 nm dimensions. The main difference between type I and type II membranes was found by SAXS. The type I membrane spectra showed, besides a broad band at a 27-nm q value (modulus of the scattering vector), an extra band at 6 nm, which was not observed in the type II membrane. The SAXS spectra were interpreted in terms of PPO, PB soft segments, and urethane/urea links, as well as hard moiety segregation in the reaction medium. This additional segregation (q = 7 nm), although subtle, results in diverse mechanical behavior of in both membranes.


Elastomer SAXS Urethane/urea Structure 



The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Instituto Nacional de Ciência e Tecnologia de Fluidos Complexos (INCT-FCx), Núcleo de Apoio à Pesquisa de Fluidos Complexos (NAP-FCx), and the National Institute (INCT) for Complex Functional Materials from Brazil. The Portuguese Science and Technology Foundation also supported this work through grants SFRH/BPD/64330/2009 and through FCT–Portuguese Foundation for Science and Technology under the Project UID/CTM/50025/2013.


  1. 1.
    M. Furukawa, T. Shiiba, S. Murata, Mechanical properties and hydrolytic stability of polyesterurethane elastomers with alkyl side groups. Polymer 40, 1791 (1999)CrossRefGoogle Scholar
  2. 2.
    B. Bogdanov, V. Toncheva, E. Schacht, Thermal properties and morphology of poly(ester-urethanes) prepared from polycaprolactone-diol. J. Therm. Anal. Calorim. 56, 1115 (1999)CrossRefGoogle Scholar
  3. 3.
    C. E. Miller, P. G. Edelman, B. D. Ratner, B. E. Eichinger, Near-infrared spectroscopic analyses of poly(ether urethane urea) block copolymers. Part II: phase separation. Appl. Spectrosc. 44, 581 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Ozdemir, N. Hasirci, K. Serbetci, Oxygen plasma modification of polyurethane membranes. J. Mater. Sci. Mater. Med. 3, 1147 (2002)CrossRefGoogle Scholar
  5. 5.
    H. S. Lee, Y. K. Wang, S. L. Hsu, Spectroscopic analysis of phase separation behavior of model polyurethanes. Macromolecules 20, 2089 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    C. Prisacariu, Polyurethane elastomers (Springer-Verlag, Wien, 2011)CrossRefGoogle Scholar
  7. 7.
    A. Guney, H. N., Properties and phase segregation of crosslinked PCL-based polyurethanes. J. Appl. Polym. Sci. 131(1), 39758 (2014)CrossRefGoogle Scholar
  8. 8.
    J. P. Sheth, D. B. Klinedinst, G. L. Wilkes, I. Yilgor, E. Yilgor, Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer 46, 7317 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Burke, N. Hasirci, Polyurethanes in biomedical applications. Adv. Exp. Med. Biol. 553, 83 (2004)CrossRefGoogle Scholar
  10. 10.
    K. Kojio, S. Kugumiya, Y. Uchiba, Y. Nishino, M. Furukawa, The microphase-separated structure of polyurethane bulk and thin films. Polym. J. 41, 118 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Kutay, T. Tincer, N. Hasirci, Polyurethanes as biomedical materials. Br. Polym. J. 23, 267 (1990)CrossRefGoogle Scholar
  12. 12.
    G. L. Wilkes, J. A. Emerson, Time dependence of small-angle X-ray measurements on segmented polyurethanes following thermal treatment. J. Appl. Phys. 47, 4261 (1976)Google Scholar
  13. 13.
    I. Yilgor, E. Yilgor, S. Das, W. G.L., Time-dependent morphology development in segmented polyetherurea copolymers based on aromatic diisocyanates. J. Polym. Sci. B Polym. Phys. 47(5), 471 (2009)Google Scholar
  14. 14.
    C. T. Zhao, M. N. de Pinho, Design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes. Polymer 40, 6089 (1999)Google Scholar
  15. 15.
    D. Queiroz, M. N. de Pinho, Gas permeability of polypropylene oxide/polybutadiene bi-soft segment urethane/urea membranes. Desalination 145, 1–3 (2002)379Google Scholar
  16. 16.
    D. P. Queiroz, M. N. de Pinho, C. Dias, ATR−FTIR studies of poly(propylene oxide)/polybutadiene bi-soft segment urethane/urea membranes. Macromolecules 36, 4195 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    D. P. Queiroz, M. C. Gonçalves, M. N. de Pinho, Tailoring of phase-segregation structures in two-soft-segment urethane/urea polymer membranes. J. Appl. Polym. Sci. 103, 315 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Faria, M. N. de Pinho, Phase segregation and gas permeation properties of poly(urethane urea) bi-soft segment membranes. Eur. Polym. J. 82, 260 (2016)CrossRefGoogle Scholar
  19. 19.
    M. H. Godinho, J. L. Figueirinhas, C.-T. Zhao, C.-T. de Pinho, Shear-induced order effects in bi-soft segment urethane/urea elastomers. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 365, 447 (2001)CrossRefGoogle Scholar
  20. 20.
    A. C. Trindade, M. H. Godinho, M. Simões, J. L. Figueirinhas, Pattern formation in a bi-soft segment urethane elastomer. Mol. Cryst. Liq. Cryst. 412, 93 (2004)CrossRefGoogle Scholar
  21. 21.
    M. H. Godinho, A. C. Trindade, J. L. Figueirinhas, L. Melo, P. Brogueira, A. Deus, P. Teixeira, Tuneable micro-and nano-periodic structures in a free-standing flexible urethane/urea elastomer film. The European Physical Journal E 21, 319 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M. H. Godinho, A. C. Trindade, J. L. Figueirinhas, L. Melo, P. Brogueira, Study of micro and nano surface structures from UV irradiated urethane/urea elastomers. Biomol. Eng. 24, 97 (2007)CrossRefGoogle Scholar
  23. 23.
    A. C. Trindade, J. P. Canejo, L. F. V. Pinto, P. Patrício, P. Brogueira, P. I. C. Teixeira, M. H. Godinho, Wrinkling labyrinth patterns on elastomeric Janus particles. Macromolecules 44, 2220 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. C. Trindade, J. P. Canejo, P. I. C. Teixeira, P. Patrício, M. H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34, 1618 (2013)CrossRefGoogle Scholar
  25. 25.
    A. C. Trindade, J. P. Canejo, P. Patrício, P. Brogueira, P. I. C. Teixeira, M. H. Godinho, Hierarchical wrinkling on elastomeric Janus spheres. J. Mater. Chem. 22, 22044 (2012)CrossRefGoogle Scholar
  26. 26.
    P. E. S. Silva, J. L. Trigueiros, A. C. Trindade, R. Simoes, R. G. Dias, M. H. Godinho, F. V. de Abreu, Perversions with a twist. Scientific Reports 6, 23413 (2016)Google Scholar
  27. 27.
    J. Lyklema, Fundamentals of Interface and colloid science: liquid-fluid interfaces (Academic Press, London, 2000)Google Scholar
  28. 28.
    L. Sperling, Introduction to Polymer Science. John Wiley Sons, Inc., 2005. 25.Google Scholar

Copyright information

© Sociedade Brasileira de Física 2016

Authors and Affiliations

  • Dennys Reis
    • 1
  • Ana C. Trindade
    • 2
  • Maria Helena Godinho
    • 2
  • Laura C. Silva
    • 3
  • Maria do Carmo Gonçalves
    • 3
  • Antônio M. Figueiredo Neto
    • 1
    Email author
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Ciência dos Materiais and CENIMAT/I3N, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  3. 3.Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations