Skip to main content
Log in

Implementation Strategies for Orbital-dependent Density Functionals

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Kohn. Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  2. A. Mattsson. Science. 298, 759 (2002)

    Article  Google Scholar 

  3. K. Capelle. Braz. J. Phys. 36, 1318 (2006)

    Article  ADS  Google Scholar 

  4. S.H. Vosko, L. Wilk, M. Nusair. Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  5. J.P. Perdew, Y. Wang. Phys. Rev. B. 45, 13244 (1992)

    Article  ADS  Google Scholar 

  6. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  7. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M. R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B. 46, 6671 (1992)

    Article  ADS  Google Scholar 

  8. J.P. Perdew, S. Kurth, A. Zupan, P. Blaha. Phys. Rev. Lett. 82, 2544 (1999)

    Article  ADS  Google Scholar 

  9. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria. Phys. Rev. Lett. 91, 146401 (2003)

    Article  ADS  Google Scholar 

  10. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  11. J.P. Perdew, V.N. Staroverov, J. Tao, G.E. Scuseria. Phys. Rev. A. 78, 052513 (2008)

    Article  ADS  Google Scholar 

  12. M.M. Odashima, K. Capelle. Phys. Rev. A. 79, 062515 (2009)

    Article  ADS  Google Scholar 

  13. J.P. Perdew, A. Zunger. Phys. Rev. B. 23, 5048 (1981)

    Article  ADS  Google Scholar 

  14. J.P. Perdew, A. Ruzsinszky, J. Sun, M.R. Pederson, Adv. At., Mol., Opt. Phys. 64, 1 (2015)

    Article  ADS  Google Scholar 

  15. U. Lundin, O. Eriksson. Int. J. Quantum Chem. 81, 247 (2001)

    Article  Google Scholar 

  16. S. Kümmel, L. Kronik. Rev. Mod. Phys. 80, 3 (2008)

    Article  ADS  Google Scholar 

  17. M.P. Lima, L.S. Pedroza, A.J.R. da Silva, A. Fazzio, D. Vieira, H.J.P. Freire, K. Capelle. J. Chem. Phys. 126, 144107 (2007)

    Article  ADS  Google Scholar 

  18. I.G. Ryabinkin, A.A. Kananenka, V.N. Staroverov. Phys. Rev. Lett. 111, 013001 (2013)

    Article  ADS  Google Scholar 

  19. S.V. Kohut, I.G. Ryabinkin, V.N. Staroverov. J. Chem. Phys. 140, 18A535 (2014)

    Article  Google Scholar 

  20. J. Krieger, Y. Li, G. Iafrate. Phys. Rev. A. 46, 5453 (1992)

    Article  ADS  Google Scholar 

  21. C.A. Ullrich, P. Reinhard, E. Suraud. Phys. Rev. A. 62, 53202 (2000)

    Article  ADS  Google Scholar 

  22. M.F. Politis, P.A. Hervieux, J. Hanssen, M.E. Madjet, F. Martin. Phys. Rev. A. 58, 367 (1998)

    Article  ADS  Google Scholar 

  23. O.V. Gritsenko, E.J. Baerends. Phys. Rev. A. 64, 042506 (2001)

    Article  ADS  Google Scholar 

  24. M. Cafiero, C. Gonzalez. Phys. Rev. A. 71, 42505 (2005)

    Article  ADS  Google Scholar 

  25. J. Hubbard. Proc. R. Soc. London, Ser. A. 276, 238 (1963)

    Article  ADS  Google Scholar 

  26. E.H. Lieb, F.Y. Wu. Physica A. 321, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. K. Capelle, V.L. Campo Jr. Phys. Rep. 528, 91 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. E.H. Lieb, F.Y. Wu. Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  29. N.A. Lima, M.F. Silva, L.N. Oliveira, K. Capelle. Phys. Rev. Lett. 90, 146402 (2003)

    Article  ADS  Google Scholar 

  30. V. V. França, D. Vieira, K. Capelle. New J. Phys. 14, 073021 (2012)

    Article  ADS  Google Scholar 

  31. G. Xianlong, M. Polini, M.P. Tosi, V.L. Campo Jr, K. Capelle, M. Rigol. Phys. Rev. B. 73, 165120 (2006)

    Article  ADS  Google Scholar 

  32. D. Vieira. Phys. Rev. B. 86, 075132 (2012)

    Article  ADS  Google Scholar 

  33. D. Vieira. J. Chem. Theory Comput. 10, 3641 (2014)

    Article  Google Scholar 

  34. M.F. Silva, N.A. Lima, A.L. Malvezzi, K. Capelle. Phys. Rev. B. 71, 125130 (2005)

    Article  ADS  Google Scholar 

  35. D. Vieira, K. Capelle. J. Chem. Theory Comput. 6, 3319 (2010)

    Article  Google Scholar 

  36. C.A. Ullrich, Z.-h. Yang. Braz. J. Phys. 44, 154 (2014)

    Article  Google Scholar 

  37. C.A. Ullrich, U.J. Gossmann, E.K.U. Gross. Phys. Rev. Lett. 74, 872 (1995)

    Article  ADS  Google Scholar 

  38. H.O. Wijewardane, C.A. Ullrich. Phys. Rev. Lett. 100, 056404 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank V. L. Campo Jr. for the original version of the BA-LDA/FN code. D. Vieira thanks K. Capelle and C. A. Ullrich for introducing him to most he knows about orbital-dependent density functionals. The authors also thank the Brazilian agencies CAPES and FAPESC for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bento, M.E., Vieira, D. Implementation Strategies for Orbital-dependent Density Functionals. Braz J Phys 46, 636–642 (2016). https://doi.org/10.1007/s13538-016-0459-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0459-7

Keywords

Navigation