Skip to main content
Log in

Deexcitation Modes in Spallation Nuclear Reactions

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Spallation nuclear reactions in the range of 0.2 to 1.2 GeV are studied using the CRISP code. A new approach for the deexcitation stage of the compound nucleus was introduced. For the calculations of the level densities, this approach is based on the Back-shifted Fermi gas model (BSFG), which takes into account pairing effects and shell corrections, whereas the calculation of the fission barriers were performed by means of the Extended Thomas-Fermi plus Strutinsky Integral (ETFSI) method, which is a high-speed approximation to the Hartree-Fock method with pairing correlations treated as in the usual BCS plus blocking approach. This procedure is more appropriate to calculate level densities for exotic nuclei. Satisfactory results were obtained and compared with experimental data obtained in the GSI experiments. As another important result, we highlight some directions for the development of a qualitatively superior version of the CRISP code with the implementation of more realistic and suitable physical models to be applied in stable and exotic nuclei that participate in the process. This new version of the code includes several substantial changes in the decay of the hot compound nucleus which allow satisfactory agreement with the experimental data and a reduction of the adjustment parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Enke, C.-M. Herbach, D. Hilscher, U. Jahnke, O. Schapiro, A. Letourneau, J. Galin, F. Goldenbaum, B. Lott, A. Peghaire, D. Filges, R.D. Neef, K. Nunighoff, N. Paul, H. Schaal, G. Sterzenbach, A. Tietze, L. Pienkowski, Nuc. Phys. a657 (1999)

  2. S. Anefalos, A. Deppman, G. Silva, J.R. Maiorino, A. dos Santos, S.B. Duarte, O.A.P. Tavares, F. Garcia, Braz. J. Phys. 35 (2005)

  3. V.S. Barashenkov, F.G. Gereghi, A.S. Iljinov, G.G. Jonsson, V.D. Toneev, Nuc. Phys. A231, 462 (1974)

    Article  ADS  Google Scholar 

  4. I. Dostrovsky, Z. Fraenkel, G. Friedlander, Phys. Rev. 116 (1959)

  5. J.C. David, D. Filges, F. Gallmeier, M. Khandaker, A. Konobeyev, S. Leray, G. Mank, A. Mengoni, R. Michel, N. Otuka, Y. Yariv, Prog. Nucl. Sc. Tech. 2 (2011) http://www.researchgate.net/publication/263076966_Benchmark_of_Spallation_Models

  6. S. Leray, J.C. David, M. Khandaker, G. Mank, A. Mengoni, N. Otsuka, D. Filges, F. Gallmeier, A. Konobeyev, R. Michel, J. korean phys. Soc. 59 (2011)

  7. D. Filges, S. Leray, Y. Yariv, A. Mengoni, A. Stanculescu, G. Mank. in Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions (International Atomic Energy Agency, 2008). https://www-nds.iaea.org/publications/indc/indc-nds-0530.pdf

  8. A. Deppman, S.B. Duarte, G. Silva, O.A.P. Tavares, S. Anefalos, T. Arruda-Neto, T.E. Rodrigues, J. Phys. G: Nucl. Part. Phys. 30, 1991 (2004)

  9. T. Kodama, S.B. Duarte, K.C. Chung, R. A.M.S. Nazareth, Phys. Rev. Lett. 49, 536 (1982)

    Article  ADS  Google Scholar 

  10. A. Deppman, O.A.P. Tavares, S.B. Duarte, E.C. de Oliveira, J.D.T. Arruda-Neto, S.R. de Pina, V.P. Likhachev, O. Rodriguez, J. Mesa, M. Gonçalves, Comp. Phys. Comm. 145, 385 (2002)

    Article  ADS  Google Scholar 

  11. A. Deppman, O.A.P. Tavares, S.B. Duarte, J.D.T. Arruda-Neto, M. Gonçalves, V.P. Likhachev, J. Mesa, E.C. de Oliveira, S.R. de Pina, O. Rodriguez, Nuc. Inst. meth. phys. Res. Sect. B: Beam Interactions with Materials and Atoms. 211, 15 (2003)

    Article  Google Scholar 

  12. M. Gonçalves, S. de Pina, D.A. Lima, W. Milomen, E.L. Medeiros, S.B. Duarte, Phys. Lett. B406, 1 (1997)

    Article  ADS  Google Scholar 

  13. S. de Pina, E.C. de Oliveira, E.L. Medeiros, S.B. Duarte, M. Gonçalves, Phys. Lett. B434, 1 (1998)

    Article  ADS  Google Scholar 

  14. I. González, F. Guzmán, A. Deppman, Phys. Rev. C. 89, 054613 (2014)

    Article  ADS  Google Scholar 

  15. A. Deppman, O.A.P. Tavares, S.B. Duarte, E.C. de Oliveira, J.D.T. Arruda-Neto, S.R. de Pina, V.P. Likhachev, O. Rodriguez, J. Mesa, M. Gonalves, Phys. Rev. Lett. 87, 182701 (2001)

    Article  ADS  Google Scholar 

  16. A. Deppman, G. Silva, S. Anefalos, S.B. Duarte, F. Garcia, F.H. Hisamoto, O.A.P. Tavares, Phys. Rev. C. 73, 064607 (2006)

    Article  ADS  Google Scholar 

  17. E. Andrade-II, J.C.M. Menezes, S.B. Duarte, F. Garcia, P.C.R. Rossi, O.A.P. Tavares, A. Deppman, J. Phys. G: Nucl. Part. Phys. 38, 085104 (2011)

    Article  ADS  Google Scholar 

  18. A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina, Phys. Rev. C. 88, 024608 (2013)

    Article  ADS  Google Scholar 

  19. T.E. Rodrigues, J.D.T. Arruda-Neto, A. Deppman, V.P. Likhachev, J. Mesa, C. Garcia, K. Shtejer, G. Silva, S.B. Duarte, O.A.P. Tavares, Phys. Rev. C. 69, 064611 (2004)

    Article  ADS  Google Scholar 

  20. I. Gonzalez, et al., J. Phys. G: Nucl. Part. Phys. 38, 115105 (2011)

    Article  ADS  Google Scholar 

  21. A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, N.A. Demekhina, Phys. Rev. C. 87, 054604 (2013)

    Article  ADS  Google Scholar 

  22. S. Anéfalos Pereira, A. Deppman, G. Silva, J.R. Maiorino, A. dos Santos, S.B. Duarte, O.A.P. Tavares, F. Garcia, Nuc. Sc. Eng. 159, 102 (2008)

    Article  Google Scholar 

  23. L. Landau, E. Lifschitz. Physique Statistique (Ed. Mir, Moscow, 1967)

    Google Scholar 

  24. D. Bucurescu, T. Von Egidy, Phys. Rev. C. 72, 044311 (2005)

    Article  ADS  Google Scholar 

  25. T. Ericson, Nuc. Phys. 8, 265 (1958)

    Article  Google Scholar 

  26. V.I. Plyaskin, R.A. Kosilov, Phys. Atomic Nuclei. 63, 752 (2005)

    Article  ADS  Google Scholar 

  27. G. Audi, A.H. Wapstra, Nuc. Phys. A595, 409 (1995)

    Article  ADS  Google Scholar 

  28. P. Demetriou, S. Goriely, Nuc. Phys. A695, 95 (2001)

    Article  ADS  Google Scholar 

  29. J.M. Pearson, Hyp. Interactions. 132, 59 (2001). Ⓒ2001 Kluwer Academic Publishers

    Article  ADS  Google Scholar 

  30. A. Mamdouh, J.M. Pearson, M. Rayet, F. Tondeur, Nuc. Phys. A679, 337 (2001)

    Article  ADS  Google Scholar 

  31. A. Mamdouh, J.M. Pearson, M. Rayet, F. Tondeur, Nuc. Phys. A644, 389 (1999)

    ADS  Google Scholar 

  32. P. Möller, S.G. Nilsson, J.R. Nix, Nuc. Phys. A229, 292 (1974)

    Article  ADS  Google Scholar 

  33. J.R. Nix, Nuc. Phys. A130, 241 (1969)

    ADS  Google Scholar 

  34. T. Enqvist, et al., Nuc. Phys. A686, 481 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. F. Rejmund, B. Mustapha, P. Armbruster, J. Benlliure, M. Bernas, A. Boudard, J.P. Dufour, T. Enqvist, R. Legrain, S. Leray, K.-H. Schimidt, C. Stephan, J. Taieb, L. Tassan-Got, C. Volant, Nuc. Phys. A683, 540 (2001)

    Article  ADS  Google Scholar 

  36. P. Fröbrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998)

    Article  ADS  Google Scholar 

  37. W. Ye, Phys. Rev. C. 85, 011601 (2012)

    Article  ADS  Google Scholar 

  38. S.E. Koonin, J.R. Nix, Phys. Rev. C. 13, 209 (1976)

    Article  ADS  Google Scholar 

  39. W. Younes, D. Gogny. in LLNL-TR-586694, (2012)

  40. W. Ye, J. Tian, Phys. Rev. C. 91, 064603 (2015)

    Article  ADS  Google Scholar 

  41. O.T. Grudzevich, S.G. Yavshits, Phys. Atom. Nuclei. 76, 263 (2013)

    Article  ADS  Google Scholar 

  42. S. Yavshits. in INDC-CCP-0452 (international atomic energy agency, 2011). http://www-nds.iaea.org/reports-new/inde-reports/inde-ccp/inde-ccp-0452.pdf

Download references

Acknowledgments

Part of this work was made in the frame of the academic cooperation agreement between UESC and InSTEC. O. Rodríguez and F. Guzmán would like to recognize the provisions of UESC for the conclusion of this work. F. Guzman would also like to thank the SBF (Sociedade Brasileira de Física) for the financial support of PLAF/SBF/CNPq in the frame of the Catedra Itinerante program. O. Tumbarell would like to thank the FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia) for the financial support. A.R. Samana thanks the financial support of AUXPE-FAPESB-3336/2014/Processo no: 23038.007210/2014-19 for the visit of F. Guzmán to the UESC-BA while performing this work. A. Deppman thanks the financial support of CNPq/305639/2010-2. D. A. Souza thanks the financial support of CAPES. And finally, the authors thank the financial support of Conselho Nacional de Desenvolvimento Cientfico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Velasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco, F.G., Guzmán, F., Rodriguez, O. et al. Deexcitation Modes in Spallation Nuclear Reactions. Braz J Phys 46, 415–423 (2016). https://doi.org/10.1007/s13538-016-0430-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0430-7

Keywords

Navigation