Brazilian Journal of Physics

, Volume 46, Issue 3, pp 282–287 | Cite as

Efficiency of Inefficient Endoreversible Thermal Machines

  • José P. Palao
  • Luis A. Correa
  • Gerardo Adesso
  • Daniel Alonso


We present a study of the performance of endoreversible thermal machines optimized with respect to the thermodynamic force associated with the cold bath in the regime of small thermodynamic forces. These thermal machines can work either as an engine or as a refrigerator. We analyze how the optimal performances are determined by the dependence of the thermodynamic flux on the forces. The results are motivated and illustrated with a quantum model, the three level maser, and explicit analytical expressions of the engine efficiency as a function of the system parameters are given.


Efficiency Quantum thermodynamics Endoreversible 



D. Alonso acknowledges the warm hospitality and support of the organizing committee of the Quantum Information and Thermodynamics workshop held in São Carlos in February 2015 and to Prof. Lucas C. Céleri for his kind assistance. We thank R. Kosloff, R. Uzdin, M Esposito, A del Campo, and I. de Vega for fruitful discussions in São Carlos. Financial support from Spanish MINECO (FIS2013-40627-P and FIS2013-41352-P), COST Action MP1209, and EU Collaborative Project TherMiQ (Grant Agreement 618074) is gratefully acknowledged.


  1. 1.
    S. Carnot. Reflections on the Motive Power of Heat and on Machines Fitted to Develop that Power (Wiley, New York, 1890)Google Scholar
  2. 2.
    J. Yvon. Proceedings of the International Conference on Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations, New York, 1955), p. 387Google Scholar
  3. 3.
    I.I. Novikov, Efficiency of an atomic power generating installation. At. Energy. 3, 1269–1272 (1957)CrossRefGoogle Scholar
  4. 4.
    F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    C. Van den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Esposito, K. Lindenberg, C. Van den Broeck, Universality of efficiency at maximum power. Phys. Rev. Lett. 102, 130602 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    E. Geva, R. Kosloff, A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 96, 3054–3067 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhou, D. Segal, et al., Minimal model of a heat engine: Information theory approach. Phys. Rev. E. 82, 011120 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Abe, Maximum-power quantum-mechanical carnot engine. Phys. Rev. E. 83, 041117 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Minimal universal quantum heat machine. Phys. Rev. E. 87, 012140 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S. Velasco, J.M.M. Roco, A. Medina, A. Calvo Hernández, New performance bounds for a finite-time Carnot refrigerator. Phys. Rev. Lett. 78, 3241–3244 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang, M. Li, Z.C. Tu, A. Calvo-Hernández, J.M.M. Roco, Coefficient of performance at maximum figure of merit and its bounds for low-dissipation carnot-like refrigerators. Phys. Rev. E. 86, 011127 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Allahverdyan, K. Hovhannisyan, G. Mahler, Optimal refrigerator. Phys. Rev. E. 81, 051129 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Performance bound for quantum absorption refrigerators. Phys. Rev. E. 87, 042131 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    L.A. Correa, Multistage quantum absorption heat pumps. Phys. Rev. E. 89, 042128 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Optimal performance of endoreversible quantum refrigerators. Phys. Rev. E. 90, 062124 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    H.E.D. Scovil, E.O. Schulz-DuBois, Three-level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)ADSCrossRefGoogle Scholar
  20. 20.
    R. Kosloff, Quantum thermodynamics, A dynamical viewpoint. Entropy. 15, 2100–2128 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    R. Kosloff, A. Levy, Quantum heat engines and refrigerators: Continuous devices. Anual Rev. Phys. Chem. 65, 365–393 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    H.P. Breuer, F. Petruccione. The Theory of Open Quantum Systems (Oxford University Press, New York, 2002)MATHGoogle Scholar
  23. 23.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L.A. Correa, J.P. Palao, D. Alonso, Internal dissipation and heat leaks in quantum thermodynamics cycles. Phys. Rev. E. 92, 032136 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2016

Authors and Affiliations

  • José P. Palao
    • 1
  • Luis A. Correa
    • 2
  • Gerardo Adesso
    • 3
  • Daniel Alonso
    • 1
  1. 1.IUdEA and Department of PhysicsUniversity of La LagunaLa LagunaSpain
  2. 2.Department of PhysicsUniversidad Autónoma de BarcelonaBellaterraSpain
  3. 3.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations