Advertisement

Brazilian Journal of Physics

, Volume 46, Issue 2, pp 152–156 | Cite as

Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian

  • N. Bebiano
  • J. da Providência
  • J. P. da Providência
General and Applied Physics

Abstract

A non-self-adjoint bosonic Hamiltonian H possessing real eigenvalues is investigated. It is shown that the operator can be diagonalized by making use of pseudo-bosonic operators. The biorthogonal sets of eigenvectors for the Hamiltonian and its adjoint are explicitly constructed. The positive definite operator which connects both sets of eigenvectors is also given. The dynamics of the model is briefly analyzed.

Keywords

Pseudo-Hermitian Hamiltonians Non-Hermitian Hamiltonians with real eigenvalues Pseudo-bosons 

References

  1. 1.
    F. Bagarello, Construction of pseudo-bosons systems. J. Math. Phys. 51, 023531 (2010)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Bagarello, Pseudo-bosons, so far. Rep. Math. Phys. 68, 175–210 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    F. Bagarello, More mathematics for pseudo-bosons. J. Math. Phys. 54, 063512 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    F. Bagarello, F. Gargano, D. Volpe, D-deformed harmonic oscillators, International Journal of Theoretical Physics 01/2015.Google Scholar
  5. 5.
    N. Bebiano, J. da Providência and JP. da Providência, Hamiltonians ex- pressed in terms of bosonic operators and their spectra, Int. J.Theor. Phys., accepted.Google Scholar
  6. 6.
    N. Bebiano and J. da Providência, The EMM and the spectral analysis of a non self-adjoint Hamiltonian on an infinite dimensional Hilbert space, 15th Workshop on Pseudo Hermitian Hamiltonians in Quantum Physics, Proceedings, Springer accepted.Google Scholar
  7. 7.
    J. Da Providência, N. Bebiano, J.P. Da Providência, Non hermitian oper-ators with real spectra in quantum mechanics. Braz. J. Phys. 41, 78–85 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Quasi-hermitian operators in quantum mechanics and the variational principle. Ann. Phys. NY 213, 74 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    C.M. Bender, D.C. Brody, H.F. Jones, Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 27041 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Gonzaléz Lopéz, T. Tanaka, Nonlinear pseudo-supersymmetry in the framework of N -fold supersymmetry. J. Phys. A Math. Gen. 39, 3715–23 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Tanaka, Preprint quant-ph/0603075. J. Phys. A Math. Gen. 39, L369–L376 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Znojil, Should PT symmetric quantum mechanics be interpreted as nonlinear? J. Nonlinear Math. Phys. 9, 122–123 (2002)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Mostafazadeh, Exact PT-symmetry is equivalent to hermiticity. J. Phys. A Math. Gen. 36, 7081 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Complex Extension of Quantum Mechanics, J. Math. Phys. 46 (2005) 102108; Delta-function potential with a complex coupling, J. Phys. A: Math. Gen. 39 (2006) 13495Google Scholar
  16. 16.
    Pseudo-Hermicity and generalized PT- and CPT-symmetries, J. Math. Phys. 44 (2003) 974; arXiv:quant-ph/060173v2.Google Scholar

Copyright information

© Sociedade Brasileira de Física 2016

Authors and Affiliations

  • N. Bebiano
    • 1
  • J. da Providência
    • 2
  • J. P. da Providência
    • 3
  1. 1.Department of Mathematics, CMUCUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Physics, CFisUCUniversity of CoimbraCoimbraPortugal
  3. 3.Depatamento de F’ısicaUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations