Brazilian Journal of Physics

, Volume 46, Issue 1, pp 97–104 | Cite as

Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity

  • D. M. Oliveira
  • J. Raeder
  • B. T. Tsurutani
  • J. W. Gjerloev
General and Applied Physics

Abstract

We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth’s magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed.

Keywords

Space physics Ionosphere-magnetosphere interaction Plasma physics 

Notes

Acknowledgments

This work was supported by grant AGS-1143895 from the National Science Foundation and grant FA-9550-120264 from the Air Force Office of Sponsored Research. We thank the Wind and ACE teams for the solar wind data and CDAWeb interface for data availability. We thank Dr. C. W. Smith, the ACE team, and Dr. J. C. Kasper for their list compilations. For the ground magnetometer data, we gratefully acknowledge: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS; The S-RAMP Database, PI K. Yumoto and Dr. K. Shiokawa; The SPIDR database; AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; The institutes who maintain the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Conners; DTU Space, PI Dr. J¨urgen Matzka; South Pole and McMurdo Magnetometer, PI’s Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic Survey; McMac, PI Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Dr. J¨urgen Matzka; MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of L’Aquila, PI M. Vellante; SuperMAG, PI Jesper W. Gjerloev. D.M.O. thanks the SuperMAG PI J. W. Gjerloev for the straightforward SuperMAG website for its convenience of data visualization and download.

References

  1. 1.
    B Abraham-Shrauner, Determination of magne-tohydronamic shock normals, J. Geophys. Res. 77(4), 736–739 (1972). doi:10.1029/JA077i004p00736
  2. 2.
    B. Abraham-Shrauner, S. H. Yun, Inter-planetary shocks seen by Ames Plasma Probe on Pi-oneer 6 and 7, J. Geophys. Res. 81(13), (1976). doi:10.1029/JA081i013p02097
  3. 3.
    S.-I. Akasofu, J. Chao, Interplanetary shock waves and magnetospheric substorms. Planet. Space Sci. 28(4), 381–385 (1980). doi:10.1016/0032-0633(80)90042-2 CrossRefADSGoogle Scholar
  4. 4.
    L. Bolduc, GIC observations and studies in the Hydro-Québec power system. J. Atmos. Sol. Terr. Phys. 64(16), 1793–1802 (2002). doi:10.1016/S1364-6826(02)00128-1 CrossRefADSGoogle Scholar
  5. 5.
    D.S. Colburn, C.P. Sonett, Discontinuities in the solar wind. Space Sci. Rev. 439(A11), 506 (1966). doi:10.1007/BF00240575 Google Scholar
  6. 6.
    J.D. Craven, L.A. Frank, C.T. Russell, E.E. Smith, R.P. Lepping, Global auroral responses to magnetospheric compressions by shocks in the solar wind: two case studies, in Solar Wind-Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin (Terra Scientific, Tokyo, Japan, 1986), pp. 367–380CrossRefGoogle Scholar
  7. 7.
    T.N. Davis, M. Sugiura, Auroral elec-trojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785–801 (1966). doi:10.1029/JZ071i003p00785 CrossRefADSGoogle Scholar
  8. 8.
    E. Echer, W.D. Gonzalez, L.E.A. Vieira, A.D.L.F.L. Guarnieri, A. Prestes, A.L.C. Gonzalez, N.J. Schuch, Interplanetary shock parameters during solar activity maximum (2000) and minimum (1995-1996). Braz. J. Phys. 33(1), 2301 (2003). doi:10.1590/S0103-97332003000100010 CrossRefGoogle Scholar
  9. 9.
    E. Echer, B. Tsurutani, F. Guarnieri, J. Kozyra, Interplanetary fast forward shocks and their geomagnetic effects: CAWSES events. J. Atmos. Sol. Terr. Phys. 73(11-12), 1330–1338 (2011). doi:10.1016/j.jastp.2010.09.020 CrossRefADSGoogle Scholar
  10. 10.
    I.A. Erinmez, J.G. Kappenman, W.A. Radasky, Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Sol. Terr. Phys. 63(5–6), 743–756 (2002). doi:10.1016/S1364-6826(02)00036-6 CrossRefADSGoogle Scholar
  11. 11.
    J.W. Gjerloev, A global ground-based magneto-meter initiative. Eos Trans. AGU 90(27), 230–231 (2009). doi:10.1029/2009EO270002 CrossRefADSGoogle Scholar
  12. 12.
    J. W. Gjerloev, The SuperMAG data processing technique, J. Geophys. Res. 117(A09213), 1–19 (2012). doi:10.1029/2012JA017683
  13. 13.
    W.D. Gonzalez, B.T. Tsurutani, A.L. Clúade Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88(3-4), 529–562 (1999). doi:10.1023/A:1005160129098 CrossRefADSGoogle Scholar
  14. 14.
    R.A. Gummow, P. Eng, GIC effects on pipeline corrosion and corrosion control systems. J. Atmos. Sol. Terr. Phys. 64(16), 1755–1764 (2002). doi:10.1016/S1364-6826(02)00125-6 CrossRefADSGoogle Scholar
  15. 15.
    X.-C. Guo, Y.-Q. Hu, C. Wang, Earth’s magnetosphere impinged by interplanetary shocks of different orientations. Chin. Phys. Lett. 22(12), 3221–3224 (2005). doi:10.1088/0256-307X/22/12/067 CrossRefADSGoogle Scholar
  16. 16.
    A.J. Halford, S.L. McGregor, K.R. Murphy, R.M. Millan, M.K. Hudson, L.A. Woodger, C.A. Cattel, A.W. Breneman, I.R. Mann, W.S. Kurth, G.B. Hospodarsky, M. Gkioulidou, J.F. Fennell, BARREL observations of an ICME-shock impact with the magnetosphere and the resultant radiation belt electron loss. J. Geophys. Res. 120(4), 2557–2570 (2015). doi:10.1002/2014JA020873 CrossRefGoogle Scholar
  17. 17.
    J. Kappenman, Geomagnetic storms and their impacts on the US power grid, Tech. rep (Metatech Corp, Goleta, 2010)Google Scholar
  18. 18.
    K. Kawasaki, S.-I. Akasofu, F. Yasuhara, C.-I. Meng, Storm sudden commencements and polar magnetic substorms. J. Geophys. Res. 76, 6781–6789 (1971). doi:10.1029/JA076i028p06781 CrossRefADSGoogle Scholar
  19. 19.
    S. Kokubun, R.L. McPherron, C.T. Russell, Triggering of substorms by solar wind discontinuities. J. Geophys. Res. 82(1), 74–86 (1977). doi:10.1029/JA082i001p00074 CrossRefADSGoogle Scholar
  20. 20.
    K. Liou, P. T. Newell, C.-I. Meng, C.-C. Wu, R. P. Lepping, Investigation of external triggering of substorms with Polar ultraviolet imager observations, J. Geophys. Res. 108(A10), (2003). doi:10.1029/2003JA009984
  21. 21.
    J.-J. Liu, H.-Q. Hu, D.-S. Han, Z.-Y. Xing, Z.-J. Hu, D.-H. Huang, H.-G. Yang, Response of nightside aurora to interplanetary shock from ground optical observation. Chin. J. Geophys 56(5), 598–611 (2013). doi:10.1002/cjg2.20056 CrossRefGoogle Scholar
  22. 22.
    A.T.Y. Lui, R.E. Lopez, S.M. Krimigis, R.W. McEntire, L.J. Zanetti, T.A. Potemra, A case study of magnetotail current sheet disruption and diversion. Geophys. Res. Lett. 15(7), 721–724 (1988). doi:10.1029/GL015i007p00721 CrossRefADSGoogle Scholar
  23. 23.
    A.T.Y. Lui, A. Mankofsky, C.-L. Chang, K. Papadopoulos, C.S. Wu, A current disruption mechanism in the neutral sheet: a possible trigger for substorm expansions. J. Geophys. Res. 17(6), 745–748 (1990). doi:10.1029/GL017i006p00745 Google Scholar
  24. 24.
    L.R. Lyons, A new theory for magnetospheric substorms. J. Geophys. Res. 100(A10), 19,069–19,081 (1995). doi:10.1029/95JA01344 CrossRefADSGoogle Scholar
  25. 25.
    L.R. Lyons, Substorms: fundamental observational features, distinction from other disturbances, and external triggering. J. Geophys. Res. 101(A6), 13,011–13,025 (1996). doi:10.1029/95JA01987 CrossRefADSGoogle Scholar
  26. 26.
    P.T. Newell, G. W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117(A05215), 1–19 (2012). doi:10.1029/2012JA017586
  27. 27.
    P. T. Newell, J. W. Gjerloev, Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116(A12211), 1–12 (2011). doi:10.1029/2011JA016779
  28. 28.
    P. T. Newell, J. W. Gjerloev, Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, J. Geophys. Res. 116(A12211), 1–12 (2011). doi:10.1029/2011JA016936
  29. 29.
    P.T. Newell, J.W. Gjerloev, Local geomagnetic indices and the prediction of auroral power. J. Geophys. Res. 119(12), 9790–9803 (2014). doi:10.1002/2014JA020524 CrossRefGoogle Scholar
  30. 30.
    S.Y. Oh, Y. Yi, Y.H. Kim, Solar cycle variation of the interplanetary forward shock drivers observed at 1 AU. Sol. Phys. 245(2), 391–410 (2007). doi:10.1007/s11207-007-9042-2 CrossRefADSGoogle Scholar
  31. 31.
    D. M. Oliveira, A study of interplanetary shock geoeffectiveness controlled by impact angles using simulations and observations, Ph.D. thesis, University of New Hampshire (2015)Google Scholar
  32. 32.
    D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness. J. Geophys. Res. 119(10), 8188–8201 (2014). doi:10.1002/2014JA020275 CrossRefGoogle Scholar
  33. 33.
    D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness: a statistical study. J. Geophys. Res. 120(6), 4313–4323 (2015). doi:10.1002/2015JA021147 CrossRefGoogle Scholar
  34. 34.
    K. Papadopoulos, The role of microturbulence on collisionless reconnection, in Dynamics of the Magnetosphere, ed. by S.-I. Akasofu, Astrophysics and Space Science Library 78, (Springer Netherlands, Amsterdam, The Netherlands, 1979), pp. 289-309, doi:10.1007/978-94-009-9519-214
  35. 35.
    V.J. Pizzo, The evolution of corotating stream fronts near the ecliptic plane in the inner solar system: 2.Three-dimensional tilted-dipole fronts. J. Geophys. Res. 96(A4), 5405–5420 (1991). doi:10.1029/91JA00155 CrossRefADSGoogle Scholar
  36. 36.
    J. Raeder. Global Magnetohydrodynamics: a Tutorial Review, in Space Plasma Simulation, ed. by J. Buchner, C. T. Dum, and M. Scholer, (Springer Verlag, Berlin Heilderberg, New York, 2003), pp. 1–20. doi:10.1007/3-540-36530-311
  37. 37.
    A.K. Richter, K.C. Hsieh, A.H. Luttrell, E. Marsch, R. Schwenn, Review of interplanetary shock phenomena near and within 1 AU, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, in Geophys. Monogr. Ser. 35, ed. by B.T. Tsurutani, R.G. Stone (American Geophysical Union, Washington, D.C., 1985), pp. 33–50. doi:10.1029/GM035p0033 Google Scholar
  38. 38.
    A.A. Samsonov, Numerical MHD modeling of the Earth’s magnetosheath for different IMF orientations. Adv. Space Res. 36, 1652–1656 (2006). doi:10.1016/j.bbr.2011.03.031 CrossRefADSGoogle Scholar
  39. 39.
    A. A. Samsonov, Propagation of inclined inter-planetary shock through the magnetosheath, J. Atmos.Sol. Terr. Phys. 73, 1–9 (2011). doi:10.1016/j.bbr.2011.03.031
  40. 40.
    A. A. Samsonov, D. G. Sibeck, J. Imber, MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere, J. Geophys. Res. 112(A12220), 1–9 (2007). doi:10.1029/2007JA012627
  41. 41.
    A.A. Samsonov, V.A. Sergeev, M.M. Kuznetsova, D.G. Sibeck, Asymmetric magnetospheric compressions and expansions in response to impact of inclined interplanetary shock. Geophys. Res. Lett. 42(12), 4716–4722 (2015). doi:10.1002/2015GL064294 CrossRefADSGoogle Scholar
  42. 42.
    J. Schieldge, G. Siscoe, A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J. Atmos. Sol. Terr. Phys. 32(11), 1819–1830 (1970). doi:10.1016/0021-9169(70)90139-X CrossRefADSGoogle Scholar
  43. 43.
    C.J. Schrijver, R. Dobbins, W. Murtagh, S.M. Petrinec, Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather (2014). doi:10.1002/2014SW001066 Google Scholar
  44. 44.
    G.L. Siscoe, Three-dimensional aspects of interplanetary shock waves. J. Geophys. Res. 81(34), 6235–6241 (1976). doi:10.1029/JA081i034p06235 CrossRefADSGoogle Scholar
  45. 45.
    E.J. Smith, J.A. Slavin, R.D. Zwickl, S.J. Bame, Shocks and storm sudden commencements, in Solar Wind and Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin (Terra Scientific, Tokyo, 1986), p. 345CrossRefGoogle Scholar
  46. 46.
    T. Takeuchi, C.T. Russell, T. Araki, Effect of the orientation of interplanetary shock on the geomagnetic sudden commencement. J. Geophys. Res. 107(A12), 1423 (2002). doi:10.1029/2002JA009597 CrossRefGoogle Scholar
  47. 47.
    B. Tsurutani, G. Lakhina, O. Verkhoglyadova, W. Gonzalez, E. Echer, F. Guarnieri, A review of interplanetary discontinuities and their geomagnetic effects. J. Atmos. Sol. Terr. Phys. 73(1), 5–19 (2011). doi:10.1016/j.jastp.2010.04.001 CrossRefADSGoogle Scholar
  48. 48.
    B. T. Tsurutani, X. Y. Zhou, Interplane-tary shock triggering of substorms: Wind and Polar, Adv. Space Res. 31(4), 1063–1067 (2003). doi:10.1016/S0273-1177(02)00796-2
  49. 49.
    C. Wang, Z. H. Huang, Y. Q. Hu, X. C. Guo, 3D global simulation of the interaction of interplanetary shocks with the magnetosphere, in 4th Annual IGPP In-ternational Astrophysics Conference on the Physics of Collisionless Shocks, edited by G. Li, G. Zank, and C. T. Russell, (AIP Conference Proceedings, Am. Inst. of Phys., Washington, D.C., 2005) pp. 320-324. doi:10.1063/1.2032716
  50. 50.
    C. Wang, C. X. Li, Z. H. Huang, J. D. Richardson, Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times, Geophys. Res. Lett. 33(L14104), 1–3 (2006). doi:10.1029/2006GL025966
  51. 51.
    C. Yue, Q. G. Zong, H. Zhang, Y. F. Wang, C. J. Yuan, Z. Y. Pu, S. Y. Fu, A. T. Y. Lui, B. Yang, C. R. Wang, Geomagnetic activity triggered by interplanetary shocks, J. Geophys. Res. 115(A00I05), 1–13 (2010). doi:10.1029/2010JA015356
  52. 52.
    X. Zhou, B.T. Tsurutani, Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 106(A9), 18,957–18,967 (2001). doi:10.1029/2000JA003028 CrossRefADSGoogle Scholar
  53. 53.
    X.-Y. Zhou, B.T. Tsurutani, Rapid intensification and propagation of the dayside aurora: large scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 26(8), 1097–1100 (1999). doi:10.1029/1999GL900173 CrossRefADSGoogle Scholar
  54. 54.
    Q.-G. Zong, X.-Z. Zhou, Y. F. Wang, X. Li, P. Song, D. N. Baker, T. A. Fritz, P. W. Daly, M. Dunlop, A. Pedersen, Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res. 114(A10204), 1–11 (2009). doi:10.1029/2009JA014393

Copyright information

© Sociedade Brasileira de Física 2015

Authors and Affiliations

  • D. M. Oliveira
    • 1
    • 2
  • J. Raeder
    • 3
  • B. T. Tsurutani
    • 4
  • J. W. Gjerloev
    • 5
    • 6
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Goddard Planetary Heliophysics InstituteUniversity of Maryland Baltimore CountyBaltimoreUSA
  3. 3.EOS Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  6. 6.Birkeland Centre of ExcellenceUniversity of BergenBergenNorway

Personalised recommendations