Brazilian Journal of Physics

, Volume 45, Issue 2, pp 213–218 | Cite as

Enhanced Thermal Lens Effect in Gold Nanoparticle-Doped Lyotropic Liquid Crystal by Nanoparticle Clustering Probed by Z-Scan Technique

  • V. M. Lenart
  • R. F. Turchiello
  • G. F. Goya
  • S. L. Gómez
Condensed Matter

Abstract

This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n2 increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering.

Keywords

Thermal lens Gold nanoparticles Clustering Lyotropic liquid crystal 

References

  1. 1.
    S.A. Maier. Plasmonics: Fundamentals and applications (Springer, New York, 2007)Google Scholar
  2. 2.
    M. Quinten. Optical properties of nanoparticles systems: Mie and beyond (Wiley-VCH, Singapore, 2011)CrossRefGoogle Scholar
  3. 3.
    V. Juvé, M.F. Cardinal, A. Lombardi, A. Crut, et al. Nano. Lett. 13, 2234 (2013)CrossRefADSGoogle Scholar
  4. 4.
    S. Link, M.B. Mohamed, M.A. El-Sayed. J. Phys. Chem. B. 103, 3073 (1999)CrossRefGoogle Scholar
  5. 5.
    N.I. Grigorchuk. Eur. Phys. J. B. 87, 252 (2014)CrossRefADSGoogle Scholar
  6. 6.
    A.L. Urban, X. Shen, Y. Wang, N. Large, M.W. Knight, et al. Nano. Lett. 13, 4399 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Esteban, R.W. Taylor, J.J. Baumberg. J. Aizpurua, Langmuir. 28, 8881 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Kleinstreuer, Y. Feng. Nanoscale Res. Lett. 6, 229 (2011)CrossRefADSGoogle Scholar
  9. 9.
    H. Xie, W. Yu, Y. Li, L. Chen. Nanoscale Res. Lett. 6, 124 (2011)CrossRefADSGoogle Scholar
  10. 10.
    J. Buongiorno, D. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. Tolmachev, P. Keblinski, et al. J. Appl. Phys. 106, 094312 (2009)CrossRefADSGoogle Scholar
  11. 11.
    R.F. Souza, M.A. Alencar, E.C. da Silva, M.R. Meneghetti, J.M. Hickmann. Appl. Phys. Lett. 92, 201902 (2008)CrossRefADSGoogle Scholar
  12. 12.
    H.I. Elim, J. Yang, J.Y. Lee. Appl. Phys. Lett. 88, 083107 (2006)CrossRefADSGoogle Scholar
  13. 13.
    B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, S. Fisson. Appl. Phys. Lett. 90, 223105 (2007)CrossRefADSGoogle Scholar
  14. 14.
    B.N. Khlebtsov, E.V. Panfilova, G.S. Terentyuk, I.L. Maksimova, A.V. Ivanov, N.G. Khlebtsov. Langmuir. 28, 8994 (2012)CrossRefGoogle Scholar
  15. 15.
    J.L. Li, M. Gu. IEEE J. Sel. Top. Quant. 16, 989 (2010)CrossRefGoogle Scholar
  16. 16.
    D.O. Lapotko, E.Y. Lukianova-Hleb, A.A. Oraevsky. Nanomedicine. 2, 241 (2007)CrossRefGoogle Scholar
  17. 17.
    K.V. Wong, M.J. Castillo. Adv. Mech. Eng. 2010, 795478 (2010)Google Scholar
  18. 18.
    H.H. Richardson, Z.N. Hickman, A.O. Govorov, A.C. Thomas, W. Zhang, M.E. Kordesch. Nano. Lett. 6, 783 (2006)CrossRefADSGoogle Scholar
  19. 19.
    J. Turkevich, P.C. Stevenson, J. Hillier. Discuss. Faraday Soc. 11, 55 (1951)CrossRefGoogle Scholar
  20. 20.
    Y. Galerne, A.M. Figueiredo, L. Liébert. J. Chem. Phys. 87, 1851 (1987)CrossRefADSGoogle Scholar
  21. 21.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland. IEEE J. Quantum Electron. 26, 760 (1990)CrossRefADSGoogle Scholar
  22. 22.
    F. Simoni. Nonlinear optical properties of liquid crystals and polymer dispersed liquid crystals (World Scientific, Singapore, 1997)CrossRefGoogle Scholar
  23. 23.
    F.L.S. Cuppo, A.M. Figueiredo Neto, S.L. Gómez, P. Palffy-Muhoray. J. Opt. Soc. Am. B. 19, 1342 (2002)CrossRefADSGoogle Scholar
  24. 24.
    S.L. Gómez, F.L.S. Cuppo, A.M. Figueiredo Neto, T. Kosa, M. Muramatsu, R.J. Horowicz. Phys. Rev. E. 59, 3059 (1999)CrossRefADSGoogle Scholar
  25. 25.
    A.V. Gaikwad, P. Verschuren, T. van der Loop, G. Rothenberg, E. Eiser. Soft Matter. 5, 1994 (2009)CrossRefADSGoogle Scholar
  26. 26.
    E. Shahriari, W.M.M. Yunus, K. Naghavi, Z.A. Talib. Opt. Commun. 283, 1929 (2010)CrossRefADSGoogle Scholar
  27. 27.
    F.L.S. Cuppo, S.L. Gómez, A.M. Figueiredo Neto. Eur. Phys. J. E. 13, 327 (2004)CrossRefGoogle Scholar
  28. 28.
    J.R.D. Pereira, A.M. Mansanares, A.J. Palangana, M.L. Baesso, A.A. Barbosa, P.R.G. Fernandes. Phys. Rev. E. 64, 062701 (2001)CrossRefADSGoogle Scholar
  29. 29.
    D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das. Phys. Rev. Lett. 93, 144301 (2004)CrossRefADSGoogle Scholar
  30. 30.
    CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2003), 84th edGoogle Scholar
  31. 31.
    F.L.S. Cuppo, A.M. Figueiredo Neto. Langmuir. 18, 9647 (2002)CrossRefGoogle Scholar
  32. 32.
    R. Karimzadeh, N. Mansour. Opt. Laser Technol. 42, 783 (2010)CrossRefADSGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2015

Authors and Affiliations

  • V. M. Lenart
    • 1
  • R. F. Turchiello
    • 2
  • G. F. Goya
    • 3
  • S. L. Gómez
    • 1
  1. 1.Physics DepartmentState University of Ponta GrossaPonta Grossa, PRBrazil
  2. 2.Physics DepartmentFederal University of Technology of ParanáPonta Grossa, PRBrazil
  3. 3.Department of Condensed Matter PhysicsAragon Institute of NanoscienceZaragozaSpain

Personalised recommendations