Brazilian Journal of Physics

, Volume 44, Issue 5, pp 520–529 | Cite as

The Renaissance of Radio Detection of Cosmic Rays

Particles and Fields

Abstract

Nearly 50 years ago, the first radio signals from cosmic ray air showers were detected. After many successful studies, however, research ceased not even 10 years later. Only a decade ago, the field was revived with the application of powerful digital signal processing techniques. Since then, the detection technique has matured, and we are now in a phase of transition from small-scale experiments accessing energies below 10 18 eV to experiments with a reach for energies beyond 10 19 eV. We have demonstrated that air shower radio signals carry information on both the energy and the mass of the primary particle, and current experiments are in the process of quantifying the precision with which this information can be accessed. All of this rests on solid understanding of the radio emission processes which can be interpreted as a coherent superposition of geomagnetic emission, Askaryan charge-excess radiation, and Cherenkov-like coherence effects arising in the density gradient of the atmosphere. In this article, I highlight the “state of the art” of radio detection of cosmic rays and briefly discuss its perspectives for the next few years.

Keywords

Radio detection Cosmic rays 

References

  1. 1.
    J.V. Jelley, J.H. Fruin, N.A. Porter et al., Nature 205, 327 (1965)CrossRefADSGoogle Scholar
  2. 2.
    H.R. Allan, Prog. Elem. Part. Cos. Ray Phys. 10, 171–302 (1971)Google Scholar
  3. 3.
    H. Falcke, W.D. Apel, A.F. Badea et al. (the LOPES Collaboration), Nature 435, 313–316 (2005)ADSGoogle Scholar
  4. 4.
    D. Ardouin, A. Bellétoile, D. Charrier et al. (the CODALEMA Collaboration), Nucl. Instrum. Methods A 555, 148–163 (2005)CrossRefADSGoogle Scholar
  5. 5.
    D. Ardouin, C. Cârloganu, D. Charrier et al., Astropart. Phys. 34, 717–731 (2011)CrossRefADSGoogle Scholar
  6. 6.
    S. Acounis, D. Charrier, T. Garçon, C. Rivière, P. Stassi and the Pierre Auger Collaboration, JINST 7, P11023 (2012)CrossRefADSGoogle Scholar
  7. 7.
    I. Petrov, S. Knurenko, Z. Petrov, V. Kozlov, M. Pravdin, Braz. J. Phys. (2104)Google Scholar
  8. 8.
    F.G. Schroeder and the Pierre Auger Collaboration, Braz. J. Phys. (2104)Google Scholar
  9. 9.
    F.G. Schröder, N.M. Budnev, O.A. Gress et al., Braz. J. Phys. (2104)Google Scholar
  10. 10.
    A. Nelles et al., Braz. J. Phys. (2014)Google Scholar
  11. 11.
    R.J. Nichol for the ANITA Collaboration, NIM A 626-627, S30–S35 (2011)CrossRefADSGoogle Scholar
  12. 12.
    K.D. de Vries, A.M. van den Berg, O. Scholten, K. Werner, Astropart. Phys. 34, 267 (2010)CrossRefADSGoogle Scholar
  13. 13.
    K. Werner, K.D. de Vries, O. Scholten, Astropart. Phys. 37, 5–16 (2012)CrossRefADSGoogle Scholar
  14. 14.
    M. Ludwig, T. Huege, Astropart. Phys. 34, 438–446 (2011)CrossRefADSGoogle Scholar
  15. 15.
    V. Marin, B. Revenu, Astropart. Phys. 35, 733–741 (2012)CrossRefADSGoogle Scholar
  16. 16.
    T. Huege, M. Ludwig, C.W. James, AIP Conf. Proc. 1535, 128–132 (2013)CrossRefADSGoogle Scholar
  17. 17.
    J. Alvarez-Muñiz, W.R. Carvalho Jr., E. Zas, Astropart. Phys. 35, 325–341 (2012)CrossRefADSGoogle Scholar
  18. 18.
    T. Huege, AIP Conf. Proc. 1535, 121–127 (2013)CrossRefADSGoogle Scholar
  19. 19.
    H. Schoorlemmer, PhD thesis, Radboud Universiteit Nijmegen (2012)Google Scholar
  20. 20.
    G.A. Askaryan, Soviet Phys. JETP 14, 441 (1962)Google Scholar
  21. 21.
    G.A. Askaryan, Soviet Phys. JETP 21, 658 (1965)ADSGoogle Scholar
  22. 22.
    C.W. James, H. Falcke, T. Huege, M. Ludwig, Phys. Rev. E 84, 056602 (2011)CrossRefADSGoogle Scholar
  23. 23.
    J.R. Prescott, J.H. Hough, J.K. Pidcock, Nat. Phys. Sci. 233, 109 (1971)CrossRefADSGoogle Scholar
  24. 24.
    V. Marin for the CODALEMA Collaboration, in Proc. 32nd ICRC, Beijing, China, vol. 1 (2011), p. 291Google Scholar
  25. 25.
    T. Huege for the Pierre Auger Collaboration, Braz. J. Phys. (2014)Google Scholar
  26. 26.
    K.D. de Vries, A.M. van den Berg, O. Scholten, K. Werner, Phys. Rev. Lett. 107, 61101 (2011)CrossRefADSGoogle Scholar
  27. 27.
    F. Werner et al. (the CROME Collaboration), Braz. J. Phys. (2014)Google Scholar
  28. 28.
    S. Hoover, J. Nam, P.W. Gorham et al., Phys. Rev. Lett. 105, 151101 (2010)CrossRefADSGoogle Scholar
  29. 29.
    W.D. Apel, J.C. Arteaga-Velázquez, L. Bähren et al. (the LOPES Collaboration), Astroparticle Physics 50–52 (2013) 76–91Google Scholar
  30. 30.
    S. Buitink et al., Braz. J. Phys. (2014)Google Scholar
  31. 31.
    D. Torres Machado for the CODALEMA Collaboration, Braz. J. Phys. (2014)Google Scholar
  32. 32.
    T. Huege for the Pierre Auger Collaboration, NIM A 617, 484–487 (2009)CrossRefADSGoogle Scholar
  33. 33.
    F.G. Schroeder et al. (the LOPES Collaboration), AIP Conf. Proc. 1535, 78–83 (2013)CrossRefADSGoogle Scholar
  34. 34.
    B. Revenu, AIP Conf. Proc. 1535, 56–62 (2013)CrossRefADSGoogle Scholar
  35. 35.
    N. Palmieri et al. (the LOPES Collaboration), Braz. J. Phys. (2014)Google Scholar
  36. 36.
    T. Huege, R. Ulrich, R. Engel, Astropart. Phys. 30, 96–104 (2008)CrossRefADSGoogle Scholar
  37. 37.
    W.D. Apel, J.C. Arteaga, L. Bähren et al. (the LOPES Collaboration), Phys Rev. D 85, 071101(R) (2012)ADSGoogle Scholar
  38. 38.
    F. Schröder et al. (the LOPES Collaboration) in, Proc. 32nd ICRC, Beijing, vol. 3 (2011), pp. 64–67Google Scholar
  39. 39.
    S. Grebe for the Pierre Auger Collaboration, AIP Conf. Proc.1535, 73–77 (2013)CrossRefADSGoogle Scholar
  40. 40.
    T. Huege, C.W. James, Braz. J. Phys. (2014)Google Scholar
  41. 41.
    W.D. Apel, J.C. Arteaga, L. Bähren et al. (the LOPES Collaboration), NIM A 696, 100–109 (2012)ADSGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2014

Authors and Affiliations

  1. 1.IKPKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations