Advertisement

Physics and Its Interfaces with Medicinal Chemistry and Drug Design

  • 315 Accesses

  • 2 Citations

Abstract

Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug–receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    WHO, World Health Statistics Report. (World Health Organization, 2012), http://www.who.int/gho/publications/en/. Accessed 8 May 2013

  2. 2.

    T.L. Moda, L.G. Torres, A.E. Carrara, A.D. Andricopulo, Bioinformatics 24, 2270 (2008)

  3. 3.

    P. Kirkpatrick, Nat. Rev. Drug. Discov. 8, 196 (2009)

  4. 4.

    S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R. Lindborg, A.L. Schacht, Nat. Rev. Drug Discov. 9, 203 (2010)

  5. 5.

    Y. Zhao, E.B. Butler, M. Tan, Cell Death Dis. 4, e532 (2013)

  6. 6.

    R.N. Santos, R.V. Guido, G. Oliva, L.C. Dias, A.D. Andricopulo, Med. Chem. 7, 155 (2011)

  7. 7.

    L.G. Ferreira, R.N. Santos, A.D. Andricopulo, J. Braz. Chem. Soc. 24, 201 (2013)

  8. 8.

    M. Baker, Nat. Rev. Drug Discov. 12, 5 (2013)

  9. 9.

    R.V.C. Guido, G. Oliva, A.D. Andricopulo, Pure Appl. Chem. 84, 1857 (2012)

  10. 10.

    C. Harrison, Nat. Rev. Drug Discov. 12, 101 (2013)

  11. 11.

    T.I. Oprea, R. Mannhold, H. Kubinyi, G. Folkers, Chemoinformatics in drug discovery, 1st edn. (Wiley, Weinheim, 2005), pp. 59–101

  12. 12.

    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 5th edn. (Garland Science, New York, 2008), p. 63

  13. 13.

    M. Rask-Andersen, M.S. Almén, H.B. Schiöth, Nat. Rev. Drug Discov. 10, 579 (2011)

  14. 14.

    D.L. Nelson, M.M. Cox, Lehninger principles of biochemistry, 5th edn. (W.H. Freeman, New York, 2009), pp. 71–85

  15. 15.

    F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333 (2006)

  16. 16.

    A.M. Bode, Z. Dong, Nat. Rev. Cancer 9, 508 (2009)

  17. 17.

    P.S. Steeg, Nat Med. 12, 895 (2006)

  18. 18.

    Cancer Facts & Figures 2013. (American Cancer Society, 2013), http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2013. Accessed 11 May 2013

  19. 19.

    P.B. Schiff, J. Fant, S.B. Horwitz, Nature 277, 665 (1979)

  20. 20.

    J.R. Jackson, D.R. Patrick, M.M. Dar, P.S. Huang, Nat. Rev. Cancer 7, 107 (2007)

  21. 21.

    M.A. Jordan, L. Wilson, Nat. Rev. Cancer 4, 253 (2004)

  22. 22.

    A.L. Risinger, F.J. Giles, S.L. Mooberry, Cancer Treat. Rev. 35, 255 (2009)

  23. 23.

    A.E. Prota, K. Bargsten, D. Zurwerra, J.J. Field, J.F. Díaz, K.H. Altmann, M.O. Steinmetz, Science 339, 587 (2013)

  24. 24.

    D. Mastropaolo, A. Camerman, Y. Luo, G.D. Brayer, N. Camerman, Proc. Natl. Acad. Sci. USA 92, 6920 (1995)

  25. 25.

    J.J. Field, J.F. Díaz, J.H. Miller, Chem. Biol. 20, 301 (2013)

  26. 26.

    D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Nat. Rev. Drug Discov. 3, 935 (2004)

  27. 27.

    X.Y. Meng, H.X. Zhang, M. Mezei, M. Cui, Curr. Comput. Aided Drug Des. 7, 146 (2011)

  28. 28.

    M. Lapelosa, E. Gallicchio, R.M. Levy, J. Chem. Theory Comput. 8, 47 (2012)

  29. 29.

    R. Macarron, M.N. Banks, D. Bojanic, D.J. Burns, D.A. Cirovic, T. Garyantes, D.V. Green, R.P. Hertzberg, W.P. Janzen, J.W. Paslay, U. Schopfer, G.S. Sittampalam, Nat. Rev. Drug Discov. 10, 188 (2011)

  30. 30.

    M. Valli, R.N. dos Santos, L.D. Figueira, C.H. Nakajima, I. Castro-Gamboa, A.D. Andricopulo, V.S. Bolzani, J. Nat. Prod. 76, 439 (2013)

  31. 31.

    J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, J. Chem. Inf. Model. 52, 1757 (2012)

  32. 32.

    A.R. Leach, Molecular modelling: principles and applications, 2nd edn. (Prentice-Hall, New Jersey, 2001), pp. 165–247

  33. 33.

    F.C. Bernstein, T.F. Koetzle, G.J. Williams, E.E. Meyer Jr., M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, J. Mol. Biol. 112, 535 (1977)

  34. 34.

    M. Rarey, B. Kramer, T. Lengauer, G. Klebe, J. Mol. Biol. 261, 470 (1996)

  35. 35.

    I. Halperin, B. Ma, H. Wolfson, R. Nussinov, Proteins 47, 409 (2002)

  36. 36.

    A.R. Leach, V.J. Gillet, An introduction to chemoinformatics, 1st edn. (Springer, Dordrecht, 2007), pp. 159–181

  37. 37.

    E.S. Istvan, J. Deisenhofer, Science 292, 1160 (2001)

  38. 38.

    M.M.A. Ajay, J. Med. Chem. 38, 4953 (1995)

  39. 39.

    R.A. Copeland, Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists, 2nd edn. (Wiley, New Jersey, 2013), pp. 1–54

  40. 40.

    J. De Heer, Phenomenological thermodynamics with applications to chemistry, 4th edn. (W. H. Freeman, New York, 1990), pp. 5–60

  41. 41.

    D.A. Pearlman, P.A. Kollman, J. Chem. Phys. 91, 7831 (1989)

  42. 42.

    A. Hinchliffe, Molecular modelling for beginners, 2nd edn. (Wiley, London, 2008), pp. 49–63

  43. 43.

    K.M. Merz, D. Ringe, C.H. Reynolds, Drug design: structure- and ligand-based approaches, 1st edn. (Cambridge University Press, Cambridge, 2010), pp. 61–119

  44. 44.

    M. Born, J.R. Oppenheimer, Ann. Phys. 389, 457 (1927)

  45. 45.

    P. Graham, Introduction to medicinal chemistry, 5th edn. (Oxford University Press, New York, 2013), pp. 1–28

  46. 46.

    C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 53, 5061 (2010)

  47. 47.

    C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11, 361 (1990)

  48. 48.

    M. Rigby, E.B. Smith, W.A. Wakeham, G.C. Maitland, An introduction to intermolecular forces (Clarendon Press, Oxford, 1986), pp. 3–80

  49. 49.

    J. Gasteiger, M. Marsili, Tetrahedron 36, 3219 (1980)

  50. 50.

    K.E. van Holde, C. Johnson, P.S. Ho, Principles of physical biochemistry, 2nd edn. (Prentice-Hall, New Jersey, 2006), pp. 99–103

  51. 51.

    M.W. Freyer, E.A. Lewis, Methods Cell. Biol. 84, 79 (2008)

  52. 52.

    P.O. Tsvetkov, A.A. Makarov, S. Malesinski, V. Peyrot, F. Devred, Biochimie 94, 916 (2012)

  53. 53.

    B.M. Baker, K.P. Murphy, Biophys. J. 71, 2049 (1996)

  54. 54.

    E. Freire, Drug Discov. Today Technol. 1, 295 (2004)

Download references

Acknowledgments

We thank the São Carlos Institute of Physics (Instituto de Física de São Carlos) for providing an interesting and unique interdisciplinary research environment in the area of medicinal chemistry and drug design.

Author information

Correspondence to Adriano D. Andricopulo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPEG 30791 kb)

(MPEG 49362 kb)

(MPEG 59236 kb)

ESM 1

(MPEG 30791 kb)

ESM 2

(MPEG 49362 kb)

ESM 3

(MPEG 59236 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santos, R.N., Andricopulo, A.D. Physics and Its Interfaces with Medicinal Chemistry and Drug Design. Braz J Phys 43, 268–280 (2013). https://doi.org/10.1007/s13538-013-0149-7

Download citation

Keywords

  • Medicinal chemistry
  • Physics
  • Drug design
  • Molecular interactions