Advertisement

Brazilian Journal of Physics

, Volume 43, Issue 5–6, pp 351–355 | Cite as

Tidal Disruption Events

  • Suvi Gezari
Texas 2012

Abstract

The majority of supermassive black holes in the Universe lie dormant and starved of fuel. These hidden beasts can be temporarily illuminated when an unlucky star passes close enough to be tidally disrupted and consumed by the black hole. Theorists first proposed in 1975 that tidal disruption events should be an inevitable consequence of supermassive black holes in galaxy nuclei and later argued that the resulting flare of radiation from the accretion of the stellar debris could be a unique signpost for the presence of a dormant black hole in the center of a normal galaxy. It was not until over two decades later that the first convincing tidal disruption event candidates emerged in the X-rays by the ROSAT All-Sky Survey. Since then, over a dozen total candidates have now emerged from searches across the electromagnetic spectrum, including the X-rays, the ultraviolet, and the optical. In the last couple of years, we have also witnessed a paradigm shift with the discovery of relativistic beamed emission associated with tidal disruption events. I review the census of observational candidates to date and discuss the exciting prospects for using large samples of tidal disruption events discovered with the next-generation of ground-based and space-based synoptic surveys to probe accretion disk and/or jet formation and black hole demographics.

Keywords

Transients Black holes Tidal disruption events Surveys 

References

  1. 1.
    A.M. Beloborodov et al., MNRAS 259, 209 (1992)ADSGoogle Scholar
  2. 2.
    E. Berger et al., ApJ. 748, 36 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.S. Bloom et al., Science 333, 203 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    G.C. Bower, ApJ. 732, L12 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G.C. Bower et al., ApJ. 763, 84 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    D.N. Burrows et al., Nature 476, 421 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    N. Cappelluti et al., A&A 495, 9 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    B. Cenko et al., ApJ. 753, 77 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    P. Esquej et al., A&A 489, 543 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Gezari et al., ApJ. 653, L25 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    S. Gezari et al., ApJ. 676, 944 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S. Gezari et al., ApJ. 698, 1367 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S. Gezari et al., ApJ. 720, L77 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Gezari et al., Nature 485, 217 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Gezari et al., ApJ. 766, 60 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D. Giannios, B.D. Metzger, MNRAS. 416, 2102 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Guillochon, E. Ramirez-Ruiz. in press (arXiv:1206:2350) (2012)
  18. 18.
    M. Kesden. PhysRevD. 85, 4037 (2012)ADSGoogle Scholar
  19. 19.
    S. Kobayashi et al., ApJ. 615, 855 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A.J. Levan et al., Science 333, 199 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G. Lodato, E.M. Rossi, MNRAS 410, 359 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    P.W. Maksym et al., ApJ. 722, 103 (2010)CrossRefGoogle Scholar
  23. 23.
    N. Stone, A. Loeb, MNRAS. 422, 1933 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    N. Stone, R. Sari, A. Loeb, in press (arXiv:120.3374) (2012)
  25. 25.
    L. Strubbe, E. Quataert, MNRAS 400, 207 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    S. van Velzen et al., ApJ. 741, 73 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S. van Velzen et al., A&A 552, 5 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    B.A. Zauderer, Nature 476, 425 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2013

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations