Brazilian Journal of Physics

, Volume 42, Issue 5–6, pp 475–481 | Cite as

Dilaton Quantum Cosmology with a Schrödinger-like Equation

  • J. C. Fabris
  • F. T. Falciano
  • J. Marto
  • N. Pinto-Neto
  • P. Vargas Moniz
Particles and Fields

Abstract

A quantum cosmological model with radiation and a dilaton scalar field is analyzed. The Wheeler–DeWitt equation in the minisuperspace induces a Schrödinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time-dependent, a Bohmian analysis allows to extract a bouncing behavior for the scale factor.

Keywords

Quantum cosmology Gravitation Quantum gravity 

References

  1. 1.
    J.E. Lidsey, D. Wands, E.J. Copeland, Phys. Rep. 337, 343 (2000)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    E. Alvarez, J. Conde, Mod. Phys. Lett. A17, 413 (2002)MathSciNetADSGoogle Scholar
  4. 4.
    R. Colistete Jr, J.C. Fabris, N. Pinto-Neto, Phys. Rev. D57, 4707 (1998)MathSciNetADSGoogle Scholar
  5. 5.
    J.C. Fabris, N. Pinto-Neto, A. Velasco, Class. Quantum Gravity 16, 3807 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    N. Pinto-Neto, in Quantum cosmology, Cosmology and Gravitation, ed. by M. Novello, Éditions Frontières, Gif-sur-Yvette (1996)Google Scholar
  7. 7.
    F. Tipler, Phys. Rep. 137, 231 (1986)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1983)Google Scholar
  9. 9.
    B.F. Schutz, Phys. Rev. D2, 2762 (1970)MathSciNetADSGoogle Scholar
  10. 10.
    B.F. Schutz, Phys. Rev. D4, 3559 (1971)ADSGoogle Scholar
  11. 11.
    V.G. Lapchinskii, V.A. Rubakov, Theor. Math. Phys. 33, 1076 (1977)CrossRefGoogle Scholar
  12. 12.
    F.G. Alvarenga, J.C. Fabris, N.A. Lemos, G.A. Monerat, Gen. Relativ. Gravit. 34, 651 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, San Diego, 2007)MATHGoogle Scholar
  14. 14.
    F.T. Falciano, N. Pinto-Neto, Phys. Rev. D79, 023507 (2009)MathSciNetADSGoogle Scholar
  15. 15.
    F.G. Alvarenga, A.B. Batist, J.C. Fabris, Int. J. Mod. Phys. D14, 291 (2005)ADSGoogle Scholar
  16. 16.
    F.G. Alvarenga, A.B. Batista, J.C. Fabris, S.V.B. Gonçalves, Gen. Relativ. Gravit. 35, 1659 (2003)ADSMATHCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2012

Authors and Affiliations

  • J. C. Fabris
    • 1
  • F. T. Falciano
    • 2
  • J. Marto
    • 3
  • N. Pinto-Neto
    • 2
  • P. Vargas Moniz
    • 3
  1. 1.Departamento de FísicaUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.ICRACentro Brasileiro de Pesquisas FísicasUrcaBrazil
  3. 3.Departamento de FísicaUniversidade da Beira InteriorCovilhãPortugal

Personalised recommendations