Brazilian Journal of Physics

, Volume 42, Issue 1–2, pp 68–76 | Cite as

Magnetization of High Density Hadronic Fluid

  • Henrik Bohr
  • Constança Providência
  • João da Providência
Nuclear Physics


In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid remains practically constant before extremely high magnetic fields are reached. However, if pion condensation occurs, the energy decreases linearly while the magnetic field strength increases, so that a non vanishing magnetization, independent of the magnetic field, is present. The expression of the magnetization is derived by first considering and solving the Dirac equation of a fermion in interaction with a magnetic field and with a chiral sigma-pion pair. The solution provides the energies of single-particle states. The energy of the system is found by summing up contributions from all particles in the particle fluid. For nuclear densities above 2 to 3ρ 0, where ρ 0 is the equilibrium nuclear density, the resulting magnetic field turns out to be rather huge, of the order of 1017 Gauss.


Strong magnetic field Magnetized hadronic matter Landau levels Magnetars 



The present research was partially supported by the projects FCOMP-01-0124-FEDER-008393 with FCT reference CERN/FP/109316/2009, PTDC ./FIS/64707/2006 and PTDC/FIS/113292/2009


  1. 1.
    P. Haensel, A.Y. Potekhin, D.G. Yakolov, Neutron Stars, ISBN 0387335439 (2007)Google Scholar
  2. 2.
    R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992); C. Thompson, R.C. Duncan, MNRAS 275, 255 (1995); V.V. Usov, Nature 357, 472 (1992); B. Paczynski, Acta Astron. 42, 145 (1992).Google Scholar
  3. 3.
    E. Goegues, et al. Astrophys. J. 718, 331–339 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    F. Dautry, E.M. Nyman, Nucl. Phys. A 319, 323 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kutschera, W. Broniowski, A. Kotlorz, Nucl. Phys. A 516, 566–588 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    K. Takahashi, J. Phys. G: Nucl. Part. Phys. 32, 1131–1141 (2006); 32, 2347 (2006)Google Scholar
  7. 7.
    A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351–367 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    S. Gosh, S. Mandal, S. Chakrabarty, Phys. Rev. C 75, 015805 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    D.P. Menezes, M. Benghi Pinto, S.S. Avancini, A. Pérez Martínez, C. Providência, Phys. Rev. C 79, 035807 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Ebert, K.G. Klimenko, Nucl. Phys. A 728, 203 (2003); D. Ebert, K.G. Klimenko, M.A. Vdovichenko, A.S. Vshivtsev, Phys. Rev. D 61, 025005 (1999)Google Scholar
  11. 11.
    A. Vidaurre, J. Navarro, J. Bernabéu, Astron. Astrophys. 135, 361 (1984)ADSGoogle Scholar
  12. 12.
    A. Rios, A. Polls, I. Vidaña, Phys. Rev. C 71, 05580 (2005)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2012

Authors and Affiliations

  • Henrik Bohr
    • 1
  • Constança Providência
    • 2
  • João da Providência
    • 2
  1. 1.Department of Physics, B.307Danish Technical UniversityLyngbyDenmark
  2. 2.CFC, Departamento de FísicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations