Multiple dipole source localization of EEG measurements using particle filter with partial stratified resampling

  • Santhosh Kumar VeeramallaEmail author
  • V. K. Hanumantha Rao Talari
Original Article


Tracking and detection of neural activity has numerous applications in the medical research field. By considering neural sources, it can be monitored by electroencephalography (EEG). In this paper, we focus primarily on developing advanced signal processing methods for locating neural sources. Due to its high performance in state estimation and tracking, particle filter was used to locate neural sources. However, particle degeneracy limits the performance of particle filters in the most utmost situations. A few resampling methods were subsequently proposed to ease this issue. These resampling methods, however, take on heavy computational costs. In this article, we aim to investigate the Partial Stratified Resampling algorithm which is time-efficient that can be used to locate neural sources and compare them to conventional resampling algorithms. This work is aimed at reflecting on the capabilities of various resampling algorithms and estimating the performance of locating neural sources. Simulated data and real EEG data are used to conduct evaluation and comparison experiments.


EEG Particle filter Resampling Localization Inverse problems 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Antelis J, Minguez J. Dynamic solution to the EEG source localization problem using Kalman filters and particle filters. In: International conference of the IEEE engineering in medicine and biology society. 2009;77–80.Google Scholar
  2. 2.
    Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50(2):174–88. Scholar
  3. 3.
    Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Process Mag. 2001;18(6):14–30.CrossRefGoogle Scholar
  4. 4.
    Bolic M, Djuric PM, Hong S. Resampling algorithms for particle filters: a computational complexity perspective. EURASIP J Appl Signal Process. 2004. Scholar
  5. 5.
    Campi C, Pascarella A, Sorrentino A, et al. A Rao-Blackwellized particle filter for magnetoencephalography. Inverse Prob. 2008;24:25015–23. Scholar
  6. 6.
    Campi C, Pascarella A, Sorrentino A, et al. Highly automated dipole estimation (HADES). Comput Intell Neurosci. 2011. Scholar
  7. 7.
    Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods. 2004;134(1):9–21.CrossRefGoogle Scholar
  8. 8.
    Douc R, Cappe O. Comparison of resampling schemes for particle filtering. In: Proceedings ISPA 4th international symposium on image and signal processing and analysis. 2005;64–9.
  9. 9.
    Doucet A, De Freitas N, Gordon NJ. Sequential Monte-Carlo methods in practice. New York: Springer; 2001. Scholar
  10. 10.
    Ebersole JS, Hawes-Ebersole S. Clinical application of dipole models in the localization of epileptiform activity. J Clin Neurophysiol. 2007;24(2):120–9.CrossRefGoogle Scholar
  11. 11.
    Ebinger B, Bouaynaya N, Georgieva P, et al. EEG dynamic source localization using marginalized particle filtering. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), Washington, DC. 2015;454–457.
  12. 12.
    Fearnhead P. Sequential Monte Carlo methods in filter theory. PhD thesis, University of Oxford. 1998.Google Scholar
  13. 13.
    Galka A, Yamashita O, Ozaki T, et al. A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage. 2004;23:435–53.CrossRefGoogle Scholar
  14. 14.
    Georgieva P, Bouaynaya N, Silva F, Mihaylova L, Jain LC. A beamformerparticle filter framework for localization of correlated EEG sources. IEEE J Biomed Health Inform. 2016;20(3):880–92.CrossRefGoogle Scholar
  15. 15.
    Georgieva P, Mihaylova L, Bouaynaya N, et al. Particle filters and beamforming for EEG source estimation. In: IEEE world congress on computational intelligence, international joint conference on neural networks, Brisbane. 2012;10–15.
  16. 16.
    Gordon NJ, Salmon DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc Radar Signal Process. 1992;140:107–13.CrossRefGoogle Scholar
  17. 17.
    Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa O. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65:413–97.CrossRefGoogle Scholar
  18. 18.
    Hol JD. Resampling in Particle Filters, report, Linkoping. 2004.Google Scholar
  19. 19.
    Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. IEEE Nonlinear Stat Signal Process Workshop. 2006;2006:79–82.Google Scholar
  20. 20.
    Karkulali P, Nagarajan R. A holistic comparison of the different resampling algorithms for particle filter based prognosis using lithium ion batteries as a case study. Microelectron Reliab. 2018;91(1):160–9. Scholar
  21. 21.
    Kitagawa G. Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models. J Comput Graph Stat. 1996;1:1–25.MathSciNetGoogle Scholar
  22. 22.
    Koessler L, Benar C, Maillard L, Badier JM, Vignal JP, Bartolomei F, Chauvel P, Gavaret M. Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage. 2010;51(2):642–53.CrossRefGoogle Scholar
  23. 23.
    Kumar VS, Rao TVKH. Resampling schemes for Rao-Blackwellization Particle Filters. In: International conference on computing, analytics and security trends (CAST), Pune. 2016;377–382.
  24. 24.
    Li T, Bolic M, Djuric PM. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process Mag. 2015;32(3):70–86. Scholar
  25. 25.
    Makeig S, Westerfield M, Jung TP, et al. Dynamic brain sources of visual evoked responses. Science. 2002;295:690–4. Scholar
  26. 26.
    Miao L, Zhang JJ, Chakrabarti C, et al. Efficient Bayesian tracking of multiple sources of neural activity: algorithms and real-time FPGA implementation. IEEE Trans Signal Process. 2013;61(3):633–47. Scholar
  27. 27.
    Mohseni HR, Wilding EL, Sanei S. Sequential Monte Carlo techniques for EEG dipole placing and tracking. In: Sensor array and multichannel signal processing workshop. 2008;95–98.Google Scholar
  28. 28.
    Mosher JC, Leahy RM. Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process. 1999;47(2):332–40.CrossRefGoogle Scholar
  29. 29.
    Mosher JC, Lewis PS, Leahy RM. Multiple dipole modelling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng. 1992;39(6):541–57. Scholar
  30. 30.
    Mosher JC, Leahy R, Lewis P. EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng. 1999;46(3):245–59. Scholar
  31. 31.
    Oostenveld R, Fries P, Maris E, et al. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, computational intelligence and neuroscience. 2011;Article ID 156869, 9 p. Scholar
  32. 32.
    Ouyang G, Wang Y, Yang Z, Li X. Global synchronization of multichannel EEG in patients with electrical status epilepticus in sleep. Clin EEG Neurosci. 2015;46(4):357–63.CrossRefGoogle Scholar
  33. 33.
    Pascual-Marqui R. Review of Methods for Solving the EEG Inverse Problem. Int J Bioelectromagn. 1999;1(1):75–86.Google Scholar
  34. 34.
    Sarvas J. Basic mathematical and electromagnetic concepts of the bomagnetic inverse problem. Phys Med Biol. 1987;32:11–22. Scholar
  35. 35.
    Sorrentino A, Parkkonen L, Pascarella A, et al. Dynamical MEG source modeling with multi-target Bayesian filtering. Hum Brain Mapp. 2009;30(6):1911–21. Scholar
  36. 36.
    Sorrentino A, Parkkonen L, Piana M. Particle filters: a new method for reconstructing multiple current dipoles from MEG data. Int Congr Ser. 2007;1300:173–6.CrossRefGoogle Scholar
  37. 37.
    Stefan H, Schneider S, Abraham-Fuchs K, Bauer J, Feistel H, Pawlik G, Neubauer U, Rohrlein G, Huk WJ. Magnetic source localization in focal epilepsy: multichannel magnetoencephalography correlated with magnetic resonance brain imaging. Brain. 1990;113(5):1347–59.CrossRefGoogle Scholar
  38. 38.
    Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a userfriendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;Article ID 879716, 13 p.Google Scholar
  39. 39.
    Van Veen BD, Buckley K. Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 1988;5:4–24.CrossRefGoogle Scholar
  40. 40.
    Vivaldi V, Sorrentino A. Bayesian smoothing of dipoles in Magneto-/Electro-encephalography. Inverse Prob. 2016;32(045007):1–16. Scholar
  41. 41.
    Zhukov L, Weinstein D, Johnson C. Independent Component Analysis for EEG source localization. IEEE Eng Med Biol Mag. 2000;19(3):87–96.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyWarangalIndia

Personalised recommendations