Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study

  • Majid SalehiEmail author
  • Maryam Niyakan
  • Arian Ehterami
  • Saeed Haghi-Daredeh
  • Simin Nazarnezhad
  • Ghasem Abbaszadeh-Goudarzi
  • Ahmad Vaez
  • Seyedeh Fatemeh Hashemi
  • Nariman Rezaei
  • Seyed Reza Mousavi
Original Article


In this study, cinnamon (cin) was loaded into poly(ε-caprolactone)/gelatin (PCL/Gel) nanofibrous matrices in order to fabricate an appropriate mat to improve wound healing. Mats were fabricated from PCL/COLL [1:1 (w/w)] solution with 1, 5 and 25% (w/v) of cinnamon. Prepared mats were characterized with regard to their microstructure, mechanical properties, porosity, surface wettability, water-uptake capacity, water vapor permeability, blood compatibility, microbial penetration and cellular response. The fabricated mats with and without cinnamon were used to treat the full-thickness excisional wounds in Wistar rats. The results indicated that the amount of cinnamon had a direct effect on porosity, mechanical properties, water uptake capacity, water contact angle, water vapor transmission rate and cell proliferation. In addition, the results of in vivo study indicated that after 14 days, the wounds which were treated with PCL/Gel 5%cin had better wound closure (98%) among other groups. Our results suggest that the cinnamon can be used as a suitable material for wound healing.


Cinnamon Electrospinning Gelatin Poly(ε-caprolactone) Mat 



The present study was supported by Shahroud University of Medical Sciences, Shahroud, Iran (Grant No. 1398.086).

Authors’ contributions

All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

Animal experiments were approved by the ethics committee of the Shahroud university of medical sciences (ethical code: IR.SHMU.REC.1398.086) and were carried out in accordance with the university’s guidelines.


  1. 1.
    Naseri-Nosar M, Salehi M, Farzamfar S, Azami M. The single and synergistic effects of montmorillonite and curcumin-loaded chitosan microparticles incorporated onto poly (lactic acid) electrospun film on wound-healing. J Bioact Compat Polym. 2018;33(3):239–53.CrossRefGoogle Scholar
  2. 2.
    Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Facial Plast Surg Clin N Am. 2011;19(3):441–53.CrossRefGoogle Scholar
  3. 3.
    Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–33.CrossRefGoogle Scholar
  4. 4.
    Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine. 2017;12:1335–52.CrossRefGoogle Scholar
  5. 5.
    Farzamfar S, Salehi M, Ehterami A, Naseri-Nosar M, Vaez A, Zarnani AH, Sahrapeyma H, Shokri M-R, Aleahmad M. Promotion of excisional wound repair by a menstrual blood-derived stem cell-seeded decellularized human amniotic membrane. Biomed Eng Lett. 2018;8(4):393–8.CrossRefGoogle Scholar
  6. 6.
    Farzamfar S, Naseri-Nosar M, Samadian H, Mahakizadeh S, Tajerian R, Rahmati M, Vaez A, Salehi M. Taurine-loaded poly(ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: in vitro and in vivo evaluation. J Bioact Compat Polym. 2017. Scholar
  7. 7.
    Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z. Electrospun nanofibers for wound healing. Mater Sci Eng C. 2017;76:1413–23.CrossRefGoogle Scholar
  8. 8.
    Mohamed RM, Yusoh K (2016) A review on the recent research of polycaprolactone (PCL). In: Advanced Materials Research. vol 1134. Trans Tech Publ; 2016. p. 249–255.Google Scholar
  9. 9.
    Coombes A, Rizzi S, Williamson M, Barralet J, Downes S, Wallace W. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25(2):315–25.CrossRefGoogle Scholar
  10. 10.
    Bagher Z, Atoufi Z, Alizadeh R, Farhadi M, Zarrintaj P, Moroni L, Setayeshmehr M, Komeili A, Kamrava SK. Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Mater Sci Eng C. 2019;101:243–53.CrossRefGoogle Scholar
  11. 11.
    Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, Oh J-S, Akaike T, Cho C-S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24(5):801–8.CrossRefGoogle Scholar
  12. 12.
    Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C. 2013;33(3):1228–35.CrossRefGoogle Scholar
  13. 13.
    Chong EJ, Phan TT, Lim IJ, Zhang Y, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321–30.CrossRefGoogle Scholar
  14. 14.
    Ranasinghe P, Pigera S, Premakumara GS, Galappaththy P, Constantine GR, Katulanda P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med. 2013;13(1):275.CrossRefGoogle Scholar
  15. 15.
    Ballai M. In vitro Л nt¡ can di dal Activity of Cinnamomum verum. J Med Sci. 2008;8(4):425–8.CrossRefGoogle Scholar
  16. 16.
    Jayaprakasha GK, Rao LJ, Sakariah KK. Chemical composition of volatile oil from Cinnamomum zeylanicum buds. Z Naturforschung C. 2002;57(11–12):990–3.CrossRefGoogle Scholar
  17. 17.
    Farahpour M, Habibi M. Evaluation of the wound healing activity of an ethanolic extract of Ceylon cinnamon in mice. Vet Med. 2012;57(1):53–7.CrossRefGoogle Scholar
  18. 18.
    Naseri-Nosar M, Farzamfar S, Sahrapeyma H, Ghorbani S, Bastami F, Vaez A, Salehi M. Cerium oxide nanoparticle-containing poly(ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: in vitro and in vivo evaluation. Mater Sci Eng C. 2017;81:366–72.CrossRefGoogle Scholar
  19. 19.
    Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Farzamfar S, Mansouri K, Ai J. Polyurethane/gelatin nanofibrils neural guidance conduit containing platelet-rich plasma and melatonin for transplantation of Schwann cells. Cell Mol Neurobiol. 2018;38(3):703–13.CrossRefGoogle Scholar
  20. 20.
    Salehi M, Farzamfar S, Bastami F, Tajerian R. Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun. 2016;28(05):1650035.CrossRefGoogle Scholar
  21. 21.
    Salehi M, Bagher Z, Kamrava SK, Ehterami A, Alizadeh R, Farhadi M, Falah M, Komeili A. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. J Cell Physiol. 2019. Scholar
  22. 22.
    Ai A, Behforouz A, Ehterami A, Sadeghvaziri N, Jalali S, Farzamfar S, Yousefbeigi A, Ai A, goodarzi A, Salehi M, Ai J. Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. Int J Polym Mater Polym Biomater. 2019;68(18):1133–41.CrossRefGoogle Scholar
  23. 23.
    Naseri-Nosar M, Salehi M, Ghorbani S, Beiranvand SP, Goodarzi A, Azami M. Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose. 2016;23(5):3239–48.CrossRefGoogle Scholar
  24. 24.
    Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34(27):6377–87.CrossRefGoogle Scholar
  25. 25.
    Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr Polym. 2014;102:884–92.CrossRefGoogle Scholar
  26. 26.
    Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, Goodarzi A, Ghorbani S. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol. 2018;46:1–11.CrossRefGoogle Scholar
  27. 27.
    Archana D, Dutta J, Dutta P. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int J Biol Macromol. 2013;57:193–203.CrossRefGoogle Scholar
  28. 28.
    Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H, Mirzaii M, Ghorbani S, Goodarzi A. In vitro and in vivo study of PCL/collagen wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in Rats model. Int J Biol Macromol. 2018;117:601–9.CrossRefGoogle Scholar
  29. 29.
    Nangia A, Hung C. Design of a new hydrocolloid dressing. Burns. 1989;15(6):385–8.CrossRefGoogle Scholar
  30. 30.
    Chen H, Hu X, Chen E, Wu S, McClements DJ, Liu S, Li B, Li Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016;61:662–71.CrossRefGoogle Scholar
  31. 31.
    Michiels J, Missotten J, Dierick N, Fremaut D, Maene P, De Smet S. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J Sci Food Agric. 2008;88(13):2371–81.CrossRefGoogle Scholar
  32. 32.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–9.CrossRefGoogle Scholar
  33. 33.
    Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer. 2005;46(14):5094–102.CrossRefGoogle Scholar
  34. 34.
    Brisbois EJ, Handa H, Meyerhoff ME. Recent advances in hemocompatible polymers for biomedical applications. In: Puoci F, editor. Advanced polymers in medicine. New York: Springer; 2015. p. 481–511.Google Scholar
  35. 35.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26(31):6176–84.CrossRefGoogle Scholar
  36. 36.
    Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine. 2016;11(6):715–37.CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Lim CT, Ramakrishna S, Huang Z-M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16(10):933–46.CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72(1):156–65.CrossRefGoogle Scholar
  39. 39.
    MacEwan MR, MacEwan S, Kovacs TR, Batts J. What makes the optimal wound healing material? A review of current science and introduction of a synthetic nanofabricated wound care scaffold. Cureus. 2017;9(10):e1736.Google Scholar
  40. 40.
    Cipitria A, Skelton A, Dargaville T, Dalton P, Hutmacher D. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem. 2011;21(26):9419–53.CrossRefGoogle Scholar
  41. 41.
    Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current advancements and strategies in tissue engineering for wound healing: a comprehensive review. Adv Wound Care. 2017;6(6):191–209.CrossRefGoogle Scholar
  42. 42.
    Zhu X, Cui W, Li X, Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008;9(7):1795–801.CrossRefGoogle Scholar
  43. 43.
    Moroni L, De Wijn J, Van Blitterswijk C. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 2006;27(7):974–85.CrossRefGoogle Scholar
  44. 44.
    Ma PX, Elisseeff J. Scaffolding in tissue engineering. Boca Raton: CRC Press; 2005.CrossRefGoogle Scholar
  45. 45.
    Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater. 2009;4(4):044106.CrossRefGoogle Scholar
  46. 46.
    Hsieh W-C, Chang C-P, Lin S-M. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2007;57(2):250–5.CrossRefGoogle Scholar
  47. 47.
    Yang Y, Hu H. Spacer fabric-based exuding wound dressing—Part II: comparison with commercial wound dressings. Text Res J. 2017;87(12):1481–93.CrossRefGoogle Scholar
  48. 48.
    Fuli A, Zhong Z, Congkun X, Lanfang K. Component analysis of essential oils from cinnamon and their inhibition action against platelet aggregation. China Pharm. 2009;22:019.Google Scholar
  49. 49.
    Lee H-S, Ahn Y-J. Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J Agric Food Chem. 1998;46(1):8–12.CrossRefGoogle Scholar
  50. 50.
    Tung Y-T, Chua M-T, Wang S-Y, Chang S-T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol. 2008;99(9):3908–13.CrossRefGoogle Scholar
  51. 51.
    Lee J-S, Jeon S-M, Park E-M, Huh T-L, Kwon O-S, Lee M-K, Choi M-S. Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. J Med Food. 2003;6(3):183–91.CrossRefGoogle Scholar
  52. 52.
    Baumann LS, Md JS. The effects of topical vitamin E on the cosmetic appearance of scars. Dermatol Surg. 1999;25(4):311–5.CrossRefGoogle Scholar
  53. 53.
    Chericoni S, Prieto JM, Iacopini P, Cioni P, Morelli I. In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes. J Agric Food Chem. 2005;53(12):4762–5.CrossRefGoogle Scholar
  54. 54.
    Mohammadi A, Mohammad-Alizadeh-Charandabi S, Mirghafourvand M, Javadzadeh Y, Fardiazar Z, Effati-Daryani F. Effects of cinnamon on perineal pain and healing of episiotomy: a randomized placebo-controlled trial. J Integr Med. 2014;12(4):359–66.CrossRefGoogle Scholar
  55. 55.
    Peana AT, Marzocco S, Popolo A, Pinto A. (−)-Linalool inhibits in vitro NO formation: probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci. 2006;78(7):719–23.CrossRefGoogle Scholar
  56. 56.
    Peana AT, Paolo SD, Chessa ML, Moretti MD, Serra G, Pippia P. (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol. 2003;460(1):37–41.CrossRefGoogle Scholar
  57. 57.
    Ahmad RA, Serati-Nouri H, Majid FAA, Sarmidi MR, Aziz RA. Assessment of potential toxicological effects of cinnamon bark aqueous extract in rats. Int J Biosci Biochem Bioinform. 2015;5(1):36–44.Google Scholar
  58. 58.
    Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, Goodarzi A, Ghorbani S. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol. 2018;46(sup1):964–74.CrossRefGoogle Scholar
  59. 59.
    Farzamfar S, Naseri-Nosar M, Samadian H, Mahakizadeh S, Tajerian R, Rahmati M, Vaez A, Salehi M. Taurine-loaded poly(ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. J Bioact Compat Polym. 2018;33(3):282–94.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering 2019

Authors and Affiliations

  • Majid Salehi
    • 1
    • 2
    Email author
  • Maryam Niyakan
    • 3
  • Arian Ehterami
    • 4
  • Saeed Haghi-Daredeh
    • 3
  • Simin Nazarnezhad
    • 1
  • Ghasem Abbaszadeh-Goudarzi
    • 2
    • 5
  • Ahmad Vaez
    • 6
  • Seyedeh Fatemeh Hashemi
    • 3
  • Nariman Rezaei
    • 1
  • Seyed Reza Mousavi
    • 1
  1. 1.Department of Tissue Engineering, School of MedicineShahroud University of Medical SciencesShahroudIran
  2. 2.Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
  3. 3.Department of Medical Nanotechnology, School of MedicineShahroud University of Medical SciencesShahroudIran
  4. 4.Department of Mechanical and Aerospace Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  5. 5.Department of Medical Biotechnology, School of MedicineShahroud University of Medical SciencesShahroudIran
  6. 6.Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran

Personalised recommendations