Advertisement

Electrochemical methods to enhance osseointegrated prostheses

  • Mark T. EhrensbergerEmail author
  • Caelen M. Clark
  • Mary K. Canty
  • Eric P. McDermott
Review Article
  • 30 Downloads

Abstract

Osseointegrated (OI) prosthetic limbs have been shown to provide an advantageous treatment option for amputees. In order for the OI prosthesis to be successful, the titanium implant must rapidly achieve and maintain proper integration with the bone tissue and remain free of infection. Electrochemical methods can be utilized to control and/or monitor the interfacial microenvironment where the titanium implant interacts with the biological system (host bone tissue or bacteria). This review will summarize the current understanding of how electrochemical modalities can influence bone tissue and bacteria with specific emphasis on applications where the metallic prosthesis itself can be utilized directly as a stimulating electrode for enhanced osseointegration and infection control. In addition, a summary of electrochemical impedance sensing techniques that could be used to potentially assess osseointegration and infection status of the metallic prosthesis is presented.

Keywords

Osseointegration Implant associated infection Electrical stimulation Osteogenesis Biofilms Electrochemical impedance spectroscopy 

Notes

Acknowledgements

MTE has received research grants from the Office of Naval Research, Garwood Medical Devices, Zimmer Biomet, Depuy Synthes, and Lima Corporate.

Funding

Office of Naval Research Grant: N00014-16-1-3187 (MTE).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors did not perform any studies with human participants or animals to write this review article.

References

  1. 1.
    Thesleff A, Brånemark R, Håkansson B, Ortiz-Catalan M. Biomechanical characterisation of bone-anchored implant systems for amputation limb prostheses: a systematic review. Ann Biomed Eng. 2018;46(3):377–91.CrossRefGoogle Scholar
  2. 2.
    Williams E, Rydevik B, Johns R, Brånemark P-I, editors. Osseoperception and musculo-skeletal function. Tranemo: Tranemo Typo; 1999.Google Scholar
  3. 3.
    Bard AJ, Faulkner LR. Electrochemcial methods: fundamentals and applications. 2nd ed. New York: Wiley; 2000.Google Scholar
  4. 4.
    Bassett CA, Becker RO. Generation of electric potentials by bone in response to mechanical stress. Science. 1962;137:1063–4.CrossRefGoogle Scholar
  5. 5.
    Fukada E, Yasuda I. On piezoelectric effect of bone. J Phys Soc Jpn. 1957;12:1158–62.CrossRefGoogle Scholar
  6. 6.
    Yasuda I, Noguchi K, Sata T. Dynamic callus and electrical callus. J Bone Jt Surg. 1955;73A:1292–3.Google Scholar
  7. 7.
    Friedenberg ZB, Andrews ET, Smolenski BI, Pearl BW, Brighton CT. Bone reaction to varying amounts of direct current. Surg Gynecol Obstet. 1970;131(5):894–9.Google Scholar
  8. 8.
    Friedenberg ZB, Roberts PG Jr, Didizian NH, Brighton CT. Stimulation of fracture healing by direct current in the rabbit fibula. J Bone Jt Surg Am. 1971;53(7):1400–8.CrossRefGoogle Scholar
  9. 9.
    Friedenberg ZB, Zemsky LM, Pollis RP, Brighton CT. The response of non-traumatized bone to direct current. J Bone Jt Surg Am. 1974;56(5):1023–30.CrossRefGoogle Scholar
  10. 10.
    Brighton CT, Adler S, Black J, Itada N, Friedenberg ZB. Cathodic oxygen consumption and electrically induced osteogenesis. Clin Orthop Relat Res. 1975;107:277–82.CrossRefGoogle Scholar
  11. 11.
    Brighton CT, Friedenberg ZB. Electrical stimulation and oxygen tension. Ann N Y Acad Sci. 1974;238:314–20.CrossRefGoogle Scholar
  12. 12.
    Spadaro JA, Becker RO. Function of implanted cathodes in electrode-induced bone growth. Med Biol Eng Comput. 1979;17(6):769–75.CrossRefGoogle Scholar
  13. 13.
    Baranowski JTJ, Black J, Brighton CT. Microenvironmental changes associated with electrical stimulation of osteogenesis by direct current. In: Transactions of the bioelectrical repair and growth society. 1982. p. 47.Google Scholar
  14. 14.
    Baranowski JTJ. Electrical stimulation of osteogenesis by direct current: electrochemically mediated microenvironmental alterations. Philadelphia: University of Pennsylvania; 1983.Google Scholar
  15. 15.
    Baranowski TJ, Black J. The mechanism of faradaic stimulation of osteogenesis. In: Blank M, Findle E, editors. Mechanistic approaches to interactions of electrical and electromagnetic fields with living systems. New York: Plenum Publishing Co.; 1987. p. 399–416.CrossRefGoogle Scholar
  16. 16.
    Tuncay OC, Ho D, Barker MK. Oxygen tension regulates osteoblast function. Am J Orthod Dentofac Orthop. 1994;105(5):457–63.CrossRefGoogle Scholar
  17. 17.
    Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol. 1996;271(1 Pt 2):F216–22.Google Scholar
  18. 18.
    Kaysinger KK, Ramp WK. Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem. 1998;68(1):83–9.CrossRefGoogle Scholar
  19. 19.
    Cho M, Hunt TK, Hussain MZ. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol. 2001;280(5):H2357–63.CrossRefGoogle Scholar
  20. 20.
    Brighton CT, Friedenberg ZB, Black J, Esterhai JL Jr, Mitchell JE, Montique F Jr. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed: introduction of a new cathode concept. Clin Orthop Relat Res. 1981;161:122–32.Google Scholar
  21. 21.
    Baranowski TJJ, Black J. The role of cathodic potential in electrical stimulation of osteogenesis by direct current. Trans Orthop Res Soc. 1983;8:352.Google Scholar
  22. 22.
    Campbell CE, Higginbotham DV, Baranowski TJ. A constant cathodic potential device for faradic stimulation of osteogenesis. Med Eng Phys. 1995;17(5):337–46.CrossRefGoogle Scholar
  23. 23.
    Dymecki SM, Black J, Brighton CT. The cathodic potential dose-response relationship for medullary osteogenesis with stainless steel electrodes. Trans Bioelectr Repair Growth Soc. 1984;4:29.Google Scholar
  24. 24.
    Griffin M, Bayat A. Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty. 2011;11:e34.Google Scholar
  25. 25.
    Branemark P-I. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399–410.CrossRefGoogle Scholar
  26. 26.
    Branemark R, Branemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 2001;38(2):175–81.Google Scholar
  27. 27.
    Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1–15.CrossRefGoogle Scholar
  28. 28.
    Shah FA, Stenlund P, Martinelli A, Thomsen P, Palmquist A. Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography. J Mater Sci Mater Med. 2016;27(11):167.CrossRefGoogle Scholar
  29. 29.
    Shah FA, Wang X, Thomsen P, Grandfield K, Palmquist A. High-resolution visualization of the osteocyte lacuno-canalicular network juxtaposed to the surface of nanotextured titanium implants in human. ACS Biomater Sci Eng. 2015;1(5):305–13.CrossRefGoogle Scholar
  30. 30.
    Albrektsson T, Brånemark P-I, Hansson H-A, Kasemo B, Larsson K, Lundström I, McQueen DH, Skalak R. The interface zone of inorganic implantsIn vivo: titanium implants in bone. J Ann Biomed Eng. 1983;11(1):1–27.CrossRefGoogle Scholar
  31. 31.
    Binkley DM, Grandfield K. Advances in multiscale characterization techniques of bone and biomaterials interfaces. ACS Biomater Sci Eng. 2018;4(11):3678–90.CrossRefGoogle Scholar
  32. 32.
    Grandfield K, Gustafsson S, Palmquist A. Where bone meets implant: the characterization of nano-osseointegration. Nanoscale. 2013;5(10):4302–8.CrossRefGoogle Scholar
  33. 33.
    Wang X, Shah FA, Palmquist A, Grandfield K. 3D characterization of human nano-osseointegration by on-axis electron tomography without the missing wedge. ACS Biomater Sci Eng. 2017;3(1):49–55.CrossRefGoogle Scholar
  34. 34.
    Bearinger JP, Orme CA, Gilbert JL. Direct observation of hydration of TiO2 on Ti using electrochemical AFM: freely corroding versus potentiostatically held. Surf Sci. 2001;491(3):370–87.CrossRefGoogle Scholar
  35. 35.
    Bearinger JP, Orme CA, Gilbert JL. In situ imaging and impedance measurements of titanium surfaces using AFM and SPIS. Biomaterials. 2003;24(11):1837–52.CrossRefGoogle Scholar
  36. 36.
    Bearinger JP, Orme CA, Gilbert JL. Effect of hydrogen peroxide on titanium surfaces: in situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium. J Biomed Mater Res Part A. 2003;67A(3):702–12.CrossRefGoogle Scholar
  37. 37.
    Brooks E, Tobias M, Krautsak K, Ehrensberger M. The influence of cathodic polarization and simulated inflammation on titanium electrochemistry. J Biomed Mater Res B Appl Biomater. 2014;102(7):1445–53.CrossRefGoogle Scholar
  38. 38.
    Ciolko AA, Tobias M, Ehrensberger MT. The effect of fretting associated periodic cathodic potential shifts on the electrochemistry and in vitro biocompatibility of commercially pure titanium. J Biomed Mater Res Part B. 2016;104(8):1591-1601.CrossRefGoogle Scholar
  39. 39.
    Ehrensberger MT, Gilbert JL. The effect of scanning electrochemical potential on the short-term impedance of commercially pure titanium in simulated biological conditions. J Biomed Mater Res Part A. 2010;94A(3):781–9.Google Scholar
  40. 40.
    Ehrensberger MT, Gilbert JL. The effect of static applied potential on the 24-hour impedance behavior of commercially pure titanium in simulated biological conditions. J Biomed Mater Res B Appl Biomater. 2010;93B(1):106–12.Google Scholar
  41. 41.
    Ehrensberger MT, Sivan S, Gilbert JL. Titanium is not “the most biocompatible metal” under cathodic potential: the relationship between voltage and MC3T3 preosteoblast behavior on electrically polarized cpTi surfaces. J Biomed Mater Res Part A. 2010;93(4):1500.Google Scholar
  42. 42.
    Pan J, Liao H, Leygraf C, Thierry D, Li J. Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res. 1998;40(2):244–56.CrossRefGoogle Scholar
  43. 43.
    Tengvall P, Lundström I, Sjöqvist L, Elwing H, Bjursten LM. Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials. 1989;10(3):166.CrossRefGoogle Scholar
  44. 44.
    Spriano S, Yamaguchi S, Baino F, Ferraris S. A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018;79:1–22.CrossRefGoogle Scholar
  45. 45.
    Pound BG. Passive films on metallic biomaterials under simulated physiological conditions. J Biomed Mater Res Part A. 2014;102(5):1595–604.CrossRefGoogle Scholar
  46. 46.
    Bodamyali T, Kanczler JM, Simon B, Blake DR, Stevens CR. Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels. Biochem Biophys Res Commun. 1999;264(3):657–61.CrossRefGoogle Scholar
  47. 47.
    Dauben TJ, Ziebart J, Bender T, Zaatreh S, Kreikemeyer B, Bader R. A novel in vitro system for comparative analyses of bone cells and bacteria under electrical stimulation. Biomed Res Int. 2016;2016:5178640.CrossRefGoogle Scholar
  48. 48.
    Ercan B, Webster TJ. Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Int J Nanomed. 2008;3(4):477–85.Google Scholar
  49. 49.
    Ercan B, Webster TJ. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials. 2010;31(13):3684–93.CrossRefGoogle Scholar
  50. 50.
    Qiu Q, Sayer M, Shen X, Davies JE. A system designed for the study of cell activity under electrical stimulation. J Biotechnol Tech. 1995;9(3):209–14.CrossRefGoogle Scholar
  51. 51.
    Wang Q, Zhong S, Ouyang J, Jiang L, Zhang Z, Xie Y, Luo S. Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions. Clin Orthop Relat Res. 1998;348:259–68.CrossRefGoogle Scholar
  52. 52.
    Wang Q, Zhong S, Xie Y, Zhang Z, Yang G. Electrochemical reactions during constant DC current stimulation: an in vitro experiment with cultured rat calvarial cells. Electro Magnetobiol. 1995;14(1):31–40.CrossRefGoogle Scholar
  53. 53.
    Gilbert JL, Zarka L, Chang E, Thomas CH. The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces. J Biomed Mater Res. 1998;42(2):321–30.CrossRefGoogle Scholar
  54. 54.
    Gittens RA, Olivares-Navarrete R, Rettew R, Butera RJ, Alamgir FM, Boyan BD, Schwartz Z. Electrical polarization of titanium surfaces for the enhancement of osteoblast differentiation. Bioelectromagnetics. 2013;34(8):599–612.CrossRefGoogle Scholar
  55. 55.
    Haeri M, Wöllert T, Langford GM, Gilbert JL. Voltage-controlled cellular viability of preosteoblasts on polarized cpTi with varying surface oxide thickness. Bioelectrochemistry. 2013;94:53–60.CrossRefGoogle Scholar
  56. 56.
    Kalbacova M, Roessler S, Hempel U, Tsaryk R, Peters K, Scharnweber D, Kirkpatrick JC, Dieter P. The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages. Biomaterials. 2007;28(22):3263–72.CrossRefGoogle Scholar
  57. 57.
    Sivan S, Kaul S, Gilbert JL. The effect of cathodic electrochemical potential of Ti–6Al–4V on cell viability: voltage threshold and time dependence. J Biomed Mater Res B Appl Biomater. 2013;101(8):1489–97.CrossRefGoogle Scholar
  58. 58.
    Bins-Ely LM, Cordero EB, Souza JCM, Teughels W, Benfatti CAM, Magini RS. In vivo electrical application on titanium implants stimulating bone formation. J Periodontal Res. 2017;52(3):479–84.CrossRefGoogle Scholar
  59. 59.
    Colella SM, Miller AG, Stang RG, Stoebe TG, Spengler DM. Fixation of porous titanium implants in cortical bone enhanced by electrical stimulation. J Biomed Mater Res. 1981;15(1):37–46.CrossRefGoogle Scholar
  60. 60.
    Shayesteh YS, Eslami B, Dehghan MM, Vaziri H, Alikhassi M, Mangoli A, Khojasteh A. The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study. J Prosthodont. 2007;16(5):337–42.CrossRefGoogle Scholar
  61. 61.
    Song JK, Cho TH, Pan H, Song YM, Kim IS, Lee TH, Hwang SJ, Kim SJ. An electronic device for accelerating bone formation in tissues surrounding a dental implant. Bioelectromagnetics. 2009;30(5):374–84.CrossRefGoogle Scholar
  62. 62.
    Dergin G, Akta M, Gursoy B, Devecioglu Y, Kurkcu M, Benlidayi E. Direct current electric stimulation in implant osseointegration: an experimental animal study with sheep. J Oral Implantol. 2013;39(6):671–9.CrossRefGoogle Scholar
  63. 63.
    Isaacson BM, Brunker LB, Brown AA, Beck JP, Burns GL, Bloebaum RD. An evaluation of electrical stimulation for improving periprosthetic attachment. J Biomed Mater Res B Appl Biomater. 2011;97B(1):190–200.CrossRefGoogle Scholar
  64. 64.
    Shafer DM, Rogerson K, Norton L, Bennett J. The effect of electrical perturbation on osseointegration of titanium dental implants: a preliminary study. J Oral Maxillofac Surg. 1995;53(9):1063–8.CrossRefGoogle Scholar
  65. 65.
    Ehrensberger MT, Tobias ME, Nodzo SR, Hansen LA, Luke-Marshall NR, Cole RF, Wild LM, Campagnari AA. Cathodic voltage-controlled electrical stimulation of titanium implants as treatment for methicillin-resistant Staphylococcus aureus periprosthetic infections. Biomaterials. 2015;41:97–105.CrossRefGoogle Scholar
  66. 66.
    Ehrensberger M, Campagnari A, Luke-Marshall N, Gilbert J, Takeuchi E. Electrochemical eradication of microbes on surfaces of objects. US Patent No 9,616,142.Google Scholar
  67. 67.
    Spadaro JA. Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics. 1997;18(3):193–202.CrossRefGoogle Scholar
  68. 68.
    Blenkinsopp SA, Khoury AE, Costerton JW. Electrical enhancement of biocide efficacy against Pseudomonas-aeruginosa biofilms. Appl Environ Microbiol. 1992;58(11):3770–3.Google Scholar
  69. 69.
    Canty MK, Hansen LA, Tobias M, Spencer S, Henry T, Luke-Marshall NR, Campagnari AA, Ehrensberger MT. Antibiotics enhance prevention and eradication efficacy of cathodic-voltage-controlled electrical stimulation against titanium-associated methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa biofilms. mSphere. 2019;4(3):e00178-19.CrossRefGoogle Scholar
  70. 70.
    Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother. 1994;38(12):2803–9.CrossRefGoogle Scholar
  71. 71.
    Dargahi M, Hosseinidoust Z, Tufenkji N, Omanovic S. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates. Colloids Surf B. 2014;117:152–7.CrossRefGoogle Scholar
  72. 72.
    Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, Patel R. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009;53(10):4064–8.CrossRefGoogle Scholar
  73. 73.
    del Pozo JL, Rouse MS, Mandrekar JN, Sampedro MF, Steckelberg JM, Patel R. Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2009;53(1):35–40.CrossRefGoogle Scholar
  74. 74.
    del Pozo JL, Rouse MS, Mandrekar JN, Steckelberg JM, Patel R. The electricidal effect: reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob Agents Chemother. 2009;53(1):41–5.CrossRefGoogle Scholar
  75. 75.
    Dusane DH, Lochab V, Jones T, Peters CW, Sindeldecker D, Das A, Roy S, Sen CK, Subramaniam VV, Wozniak DJ, Prakash S, Stoodley P. Electroceutical Treatment of Pseudomonas aeruginosa Biofilms. Sci Rep. 2019;9(1):2008.CrossRefGoogle Scholar
  76. 76.
    Hong SH, Jeong J, Shim S, Kang H, Kwon S, Ahn KH, Yoon J. Effect of electric currents on bacterial detachment and inactivation. Biotechnol Bioeng. 2008;100(2):379–86.CrossRefGoogle Scholar
  77. 77.
    Jass J, LappinScott HM. The efficacy of antibiotics enhanced by electrical currents against Pseudomonas aeruginosa biofilms. J Antimicrob Chemother. 1996;38(6):987–1000.CrossRefGoogle Scholar
  78. 78.
    Kim YW, Subramanian S, Gerasopoulos K, Ben-Yoav H, Wu H-C, Quan D, Carter K, Meyer MT, Bentley WE, Ghodssi R. Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. Npj Biofilms Microbiomes. 2015;1:15016.CrossRefGoogle Scholar
  79. 79.
    Liu WK, Brown MR, Elliott TS. Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother. 1997;39(6):687–95.CrossRefGoogle Scholar
  80. 80.
    Mohn D, Zehnder M, Stark WJ, Imfeld T. Electrochemical Disinfection of dental implants: a proof of concept. PLoS ONE. 2011;6(1):6.CrossRefGoogle Scholar
  81. 81.
    Niepa THR, Gilbert JL, Ren DC. Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin. Biomaterials. 2012;33(30):7356–65.CrossRefGoogle Scholar
  82. 82.
    Niepa THR, Snepenger LM, Wang H, Sivan S, Gilbert JL, Jones MB, Ren D. Sensitizing Pseudomonas aeruginosa to antibiotics by electrochemical disruption of membrane functions. Biomaterials. 2016;74:267–79.CrossRefGoogle Scholar
  83. 83.
    Nodzo S, Tobias M, Hansen L, Luke-Marshall NR, Cole R, Wild L, Campagnari AA, Ehrensberger MT. Cathodic electrical stimulation combined with vancomycin enhances treatment of methicillin-resistant Staphylococcus aureus implant-associated infections. Clin Orthop Relat Res. 2015;473:2856–64.CrossRefGoogle Scholar
  84. 84.
    Nodzo SR, Tobias M, Ahn R, Hansen L, Luke-Marshall NR, Howard C, Wild L, Campagnari AA, Ehrensberger MT. Cathodic voltage-controlled electrical stimulation plus prolonged vancomycin reduce bacterial burden of a titanium implant-associated infection in a rodent model. Clin Orthop Relat Res. 2016;474:1668–75.CrossRefGoogle Scholar
  85. 85.
    Poortinga AT, Bos R, Busscher HJ. Reversibility of bacterial adhesion at an electrode surface. Langmuir. 2001;17(9):2851–6.CrossRefGoogle Scholar
  86. 86.
    Poortinga AT, Smit J, van der Mei HC, Busscher HJ. Electric field induced desorption of bacteria from a conditioning film covered substratum. Biotechnol Bioeng. 2001;76(4):395–9.CrossRefGoogle Scholar
  87. 87.
    Rabinovitch C, Stewart PS. Removal and inactivation of Staphylococcus epidermidis biofilms by electrolysis. Appl Environ Microbiol. 2006;72(9):6364–6.CrossRefGoogle Scholar
  88. 88.
    Sandvik EL, McLeod BR, Parker AE, Stewart PS. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS ONE. 2013;8(2):e55118.CrossRefGoogle Scholar
  89. 89.
    Schneider S, Rudolph M, Bause V, Terfort A. Electrochemical removal of biofilms from titanium dental implant surfaces. Bioelectrochemistry. 2018;121:84–94.CrossRefGoogle Scholar
  90. 90.
    Shirtliff ME, Bargmeyer A, Camper AK. Assessment of the ability of the bioelectric effect to eliminate mixed-species biofilms. Appl Environ Microbiol. 2005;71(10):6379–82.CrossRefGoogle Scholar
  91. 91.
    Stoodley P, deBeer D, Lappin-Scott HM. Influence of electric fields and pH on biofilm structure as related to the bioelectric effect. Antimicrob Agents Chemother. 1997;41(9):1876–9.CrossRefGoogle Scholar
  92. 92.
    Sultana ST, Atci E, Babauta JT, Mohamed Falghoush A, Snekvik KR, Call DR, Beyenal H. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Sci Rep. 2015;5:14908.CrossRefGoogle Scholar
  93. 93.
    Sultana ST, Call DR, Beyenal H. Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. NPJ Biofilms Microbiomes. 2016;2:2.CrossRefGoogle Scholar
  94. 94.
    van der Borden AJ, van der Mei HC, Busscher H. Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis. Biomaterials. 2005;26(33):6731–5.CrossRefGoogle Scholar
  95. 95.
    van der Borden AJ, van der Werf H, van der Mei HC, Busscher HJ. Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel. Appl Environ Microbiol. 2004;70(11):6871–4.CrossRefGoogle Scholar
  96. 96.
    Wang H, Ren D. Controlling Streptococcus mutans and Staphylococcus aureus biofilms with direct current and chlorhexidine. AMB Express. 2017;7(1):204.CrossRefGoogle Scholar
  97. 97.
    Wattanakaroon W, Stewart PS. Electrical enhancement of Streptococcus gordonii biofilm killing by gentamicin. Arch Oral Biol. 2000;45(2):167–71.CrossRefGoogle Scholar
  98. 98.
    Wellman N, Fortun SM, McLeod BR. Bacterial biofilms and the bioelectric effect. Antimicrob Agents Chemother. 1996;40(9):2012–4.CrossRefGoogle Scholar
  99. 99.
    Busalmen JP, de Sánchez SR. Adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold. Appl Environ Microbiol. 2001;67(7):3188–94.CrossRefGoogle Scholar
  100. 100.
    Canty M, Luke-Marshall N, Campagnari A, Ehrensberger M. Cathodic voltage-controlled electrical stimulation of titanium for prevention of methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii biofilm infections. Acta Biomater. 2017;48:451–60.CrossRefGoogle Scholar
  101. 101.
    Del Pozo JL, Rouse MS, Euba G, Greenwood-Quaintance KE, Mandrekar JN, Steckelberg JM, Patel R. Prevention of Staphylococcus epidermidis biofilm formation using electrical current. J Appl Biomater Funct Mater. 2014;12(2):81–3.Google Scholar
  102. 102.
    Shim S, Hong SH, Tak Y, Yoon J. Prevention of Pseudomonas aeruginosa adhesion by electric currents. Biofouling. 2011;27(2):217–24.CrossRefGoogle Scholar
  103. 103.
    van der Borden AJ, Maathuis PGM, Engels E, Rakhorst G, van der Mei HC, Busscher HJ, Sharma PK. Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model. Biomaterials. 2007;28(12):2122–6.CrossRefGoogle Scholar
  104. 104.
    Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, Patel R. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 2015;59(8):4610.CrossRefGoogle Scholar
  105. 105.
    Stewart PS, Wattanakaroon W, Goodrum L, Fortun SM, McLeod BR. Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother. 1999;43(2):292–6.CrossRefGoogle Scholar
  106. 106.
    van der Borden AJ, van der Mei HC, Busscher HJ. Electric-current-induced detachment of Staphylococcus epidermidis strains from surgical stainless steel. J Biomed Mater Res B Appl Biomater. 2004;68(2):160–4.CrossRefGoogle Scholar
  107. 107.
    Del Pozo JL, Rouse MS, Patel R. Bioelectric effect and bacterial biofilms: a systematic review. Int J Artif Organs. 2008;31(9):786–95.CrossRefGoogle Scholar
  108. 108.
    Freebairn D, Linton D, Harkin-Jones E, Jones DS, Gilmore BF, Gorman SP. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces. Expert Rev Med Devices. 2013;10(1):85–103.CrossRefGoogle Scholar
  109. 109.
    Sultana ST, Babauta JT, Beyenal H. Electrochemical biofilm control: a review. Biofouling. 2015;31(9–10):745–58.CrossRefGoogle Scholar
  110. 110.
    Poortinga AT, Bos R, Norde W, Busscher HJ. Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep. 2002;47(1):1–32.CrossRefGoogle Scholar
  111. 111.
    Sweity A, Ying W, Belfer S, Oron G, Herzberg M. pH effects on the adherence and fouling propensity of extracellular polymeric substances in a membrane bioreactor. J Membr Sci. 2011;378(1–2):186–93.CrossRefGoogle Scholar
  112. 112.
    Babauta JT, Nguyen HD, Istanbullu O, Beyenal H. Microscale gradients of oxygen, hydrogen peroxide, and pH in freshwater cathodic biofilms. ChemSusChem. 2013;6(7):1252–61.CrossRefGoogle Scholar
  113. 113.
    Pickering SAW, Bayston R, Scammell BE. Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. J Bone Jt Surg Br. 2003;85B(4):588–93.CrossRefGoogle Scholar
  114. 114.
    Jass J, Costerton JW, Lappin-Scott HM. The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. J Ind Microbiol. 1995;15(3):234–42.CrossRefGoogle Scholar
  115. 115.
    Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD. Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys. 2003;25(1):29–40.CrossRefGoogle Scholar
  116. 116.
    Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005;52(7):1295–302.CrossRefGoogle Scholar
  117. 117.
    Schaur S, Jakoby B, Kronreif G, IEEE. Position-dependent characterization of bone tissue with electrical impedance spectroscopy. In: 2012 IEEE sensors proceedings. IEEE: New York; 2012. p. 1352–5.Google Scholar
  118. 118.
    Sankar V, Patrick E, Dieme R, Sanchez J, Prasad A, Nishida T. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. Front Neuroeng. 2014;7:13.CrossRefGoogle Scholar
  119. 119.
    Nicholas LO, Sam EJ, Gil SR, Stephen MR, David BG, Anthony NB, Clive NM, Terence JOB, Thomas JO. Chronic impedance spectroscopy of an endovascular stent-electrode array. J Neural Eng. 2016;13(4):046020.CrossRefGoogle Scholar
  120. 120.
    Moore Z, Patton D, Rhodes SL, O’Connor T. Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers). Int Wound J. 2017;14(2):331–7.CrossRefGoogle Scholar
  121. 121.
    Clemente F, Romano M, Bifulco P, Cesarelli M. Study of muscular tissue in different physiological conditions using electrical impedance spectroscopy measurements. Biocybern Biomed Eng. 2014;34(1):4–9.CrossRefGoogle Scholar
  122. 122.
    Okamoto E, Kikuchi S, Mitamura Y. Electrical characteristic of the titanium mesh electrode for transcutaneous intrabody communication to monitor implantable artificial organs. J Artif Organs. 2016;19(3):257–61.CrossRefGoogle Scholar
  123. 123.
    Zhou XH, Zhang MK, Yu T, Liu YC, Shi HC. Oxygen profiles in biofilms undergoing endogenous respiration. Chem Eng J. 2013;220:452–8.CrossRefGoogle Scholar
  124. 124.
    Clemente F, Costa M, Monini S, Barbara M. Monitoring of fixture osteointegration after BAHA (R) implantation. Audiol Neuro-Otol. 2011;16(3):158–63.CrossRefGoogle Scholar
  125. 125.
    Teichmann D, Rohe L, Niesche A, Mueller M, Radermacher K, Leonhardt S. Estimation of penetrated bone layers during craniotomy via bioimpedance measurement. IEEE Trans Biomed Eng. 2017;64(4):765–74.CrossRefGoogle Scholar
  126. 126.
    Balmer TW, Anso J, Muntane E, Gavaghan K, Weber S, Stahel A, Buchler P. In-vivo electrical impedance measurement in mastoid bone. Ann Biomed Eng. 2017;45(4):1122–32.CrossRefGoogle Scholar
  127. 127.
    Collins PC, Paterson DC, Vernon-Roberts B, Pfeiffer D. Bone formation and impedance of electrical current flow. Clin Orthop Relat Res. 1981;155:196–210.Google Scholar
  128. 128.
    Gupta K, Gupta P, Singh G, Kumar S, Singh RK, Srivastava R. Changes in electrical properties of bones as a diagnostic tool for measurement of fracture healing. Hard Tissue. 2013;2:3.Google Scholar
  129. 129.
    Lin MC, Hu DE, Marmor M, Herfat ST, Bahney CS, Maharbiz MM. Smart bone plates can monitor fracture healing. Sci Rep. 2019;9:15.CrossRefGoogle Scholar
  130. 130.
    Kozhevnikov E, Hou XL, Qiao SP, Zhao YF, Li CF, Tian WM. Electrical impedance spectroscopy: a potential method for the study and monitoring of a bone critical-size defect healing process treated with bone tissue engineering and regenerative medicine approaches. J Mater Chem B. 2016;4(16):2757–67.CrossRefGoogle Scholar
  131. 131.
    Fox WC, Miller MA. Osseous implant for studies of biomaterials using an invivo electrochemical transducer. J Biomed Mater Res. 1993;27(6):763–73.CrossRefGoogle Scholar
  132. 132.
    Cosoli G, Scalise L, Tricarico G, Russo P, Cerri G. Bioimpedance measurements in dentistry to detect inflammation: numerical modelling and experimental results. Physiol Meas. 2017;38(6):1145–57.CrossRefGoogle Scholar
  133. 133.
    Duan YY, Clark GM, Cowan RSC. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Biomaterials. 2004;25(17):3813–28.CrossRefGoogle Scholar
  134. 134.
    Arpaia P, Clemente F, Romanucci C. An instrument for prosthesis osseointegration assessment by electrochemical impedance spectrum measurement. Measurement. 2008;41(9):1040–4.CrossRefGoogle Scholar
  135. 135.
    Sendi P, Zimmerli W. Diagnosis of periprosthetic joint infections in clinical practice. Int J Artif Organs. 2012;35(10):913–22.CrossRefGoogle Scholar
  136. 136.
    Ward AC, Tucker NP, Connolly P, IEEE. Development of a diagnostic device to detect different Pseudomonas aeruginosa phenotypes in medically relevant contexts. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society. IEEE: New York; 2014. p. 2757–60.Google Scholar
  137. 137.
    Grossi M, Ricco B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J Sens Sens Syst. 2017;6(2):303–25.CrossRefGoogle Scholar
  138. 138.
    Farrow MJ, Hunter IS, Connolly P. Developing a real time sensing system to monitor bacteria in wound dressings. Biosensors. 2012;2(2):171–88.CrossRefGoogle Scholar
  139. 139.
    Varshney M, Li Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectron. 2009;24(10):2951–60.CrossRefGoogle Scholar
  140. 140.
    Kim S, Yu G, Kim T, Shin K, Yoon J. Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim Acta. 2012;82:126–31.CrossRefGoogle Scholar
  141. 141.
    Paredes J, Becerro S, Arizti F, Aguinaga A, Del Pozo JL, Arana S. Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sens Actuators B Chem. 2013;178:663–70.CrossRefGoogle Scholar
  142. 142.
    Paredes J, Alonso-Arce M, Schmidt C, Valderas D, Sedano B, Legarda J, Arizti F, Gómez E, Aguinaga A, Del Pozo JL, Arana S. Smart central venous port for early detection of bacterial biofilm related infections. Biomed Microdevice. 2014;16(3):365–74.Google Scholar
  143. 143.
    Paredes J, Becerro S, Arizti F, Aguinaga A, Del Pozo JL, Arana S. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosens Bioelectron. 2012;38(1):226–32.CrossRefGoogle Scholar
  144. 144.
    Furst AL, Francis MB. Impedance-based detection of bacteria. Chem Rev. 2019;119(1):700–26.CrossRefGoogle Scholar
  145. 145.
    Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical methodologies for the detection of pathogens. ACS Sens. 2018;3(6):1069–86.CrossRefGoogle Scholar
  146. 146.
    Hoyos-Nogues M, Brosel-Oliu S, Abramova N, Munoz FX, Bratov A, Mas-Moruno C, Gil FJ. Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosens Bioelectron. 2016;86:377–85.CrossRefGoogle Scholar
  147. 147.
    Ahmed A, Rushworth JV, Wright JD, Millner PA. Novel impedimetric irnmunosensor for detection of pathogenic bacteria Streptococcus pyogenes in human saliva. Anal Chem. 2013;85(24):12118–25.CrossRefGoogle Scholar
  148. 148.
    Farrow MJ, Hunter I, Connolly P. Developing a real time sensing system to monitor bacteria in wound dressings. Biosensors. 2012;2:171–88.CrossRefGoogle Scholar
  149. 149.
    Russell C, Ward AC, Vezza V, Hoskisson P, Alcorn D, Steenson DP, Corrigan DK. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosens Bioelectron. 2019;126:806–14.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity at BuffaloBuffaloUSA
  2. 2.Department of OrthopaedicsUniversity at BuffaloBuffaloUSA
  3. 3.Department of Microbiology and ImmunologyUniversity at BuffaloBuffaloUSA

Personalised recommendations