Advertisement

Biomedical Engineering Letters

, Volume 9, Issue 2, pp 203–209 | Cite as

Finite element analysis of cornea deformation and curvature change during the keratoplasty suturing process

  • Jong Won Baek
  • Seong Jin ParkEmail author
Original Article
  • 63 Downloads

Abstract

Keratoplasty, which is cornea transplant surgery, is one of the treatment methods for patients with turbidity or keratitis. Recently, keratoplasty using a surgical robot was studied to increase precision. In this study, the effect of surgical factors on the deformation and curvature of the cornea were analyzed in order to improve the accuracy of keratoplasty and derive the optimal surgical factors using finite element method (FEM). Suturing tension and depth were selected as surgical factors. An FEM model, a constitutive equation, and boundary conditions were determined using experiments and reference data. Suturing tension significantly impacted deformation and curvature change, and suturing depth affected the position of the thread-cornea contact point. Both factors have a significant impact on a focal point in the retina and the patient’s visual acuity after keratoplasty.

Keywords

Cornea curvature Keratoplasty Finite element methods (FEM) Suturing 

Notes

Acknowledgements

This work was supported by the Industrial Technology Innovation Program (No. 10048358) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

This work does not contain any animal study.

References

  1. 1.
    Melles GRJ. Posterior lamellar keratoplasty: DLEK to DSEK to DMEK. Cornea. 2006;25(8):879–81.CrossRefGoogle Scholar
  2. 2.
    Hollick EJ, Coombes A, Perez-Santonja JJ, Dart JK. Lamellar keratoplasty and intracorneal inlay: an alternative to corneal tattooing and contact lenses for disfiguring corneal scars. Br J Ophthalmol. Video Report. 2005.Google Scholar
  3. 3.
    Hu Y, Li D, Zong G, Sun X. Robotic system for microsurgical keratoplasty. In: 27th Annual international conference of the IEEE engineering in medicine and biology society. 2005.Google Scholar
  4. 4.
    Zong G, Hu Y, Li D, Sun X. Visually servoed suturing for robotic microsurgical keratoplasty. In: IEEE/RSJ international conference on intelligent robots and systems. 2006.Google Scholar
  5. 5.
    Bourges JL, Hubschman JP, Burt B, Culjat M, Schwartz SD. Robotic microsurgery: corneal transplantation. Br J Ophthalmol. 2009;93(12):1672–5.CrossRefGoogle Scholar
  6. 6.
    Hoeltzel DA, Altman P, Buzard K, Choe K. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114(2):202–15.CrossRefGoogle Scholar
  7. 7.
    Bryant MR, Szerenyi K, Schmotzer H, McDonnell PJ. Corneal tensile strength in fully healed radial keratotomy wounds. Invest Ophthalmol Vis Sci. 1994;35(7):3022–31.Google Scholar
  8. 8.
    Bryant MR, McDonnell PJ. Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng. 1996;118(4):473–81.CrossRefGoogle Scholar
  9. 9.
    Zeng Y, Yang J, Huang K, Lee Z, Lee X. A comparison of biomechanical properties between human and porcine cornea. J Biomech. 2001;34(4):533–7.CrossRefGoogle Scholar
  10. 10.
    Elsheikh A, Anderson K. Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface. 2005;2(3):177–85.CrossRefGoogle Scholar
  11. 11.
    Elsheikh A, Wang D, Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg. 2007;23(8):808–18.CrossRefGoogle Scholar
  12. 12.
    Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res. 2008;86(5):783–90.CrossRefGoogle Scholar
  13. 13.
    Rawe IM, Meek KM, Leonard DW, Takahashi T, Cintron C. Structure of corneal scar tissue: an x-ray diffraction study. Biophys J. 1994;67(4):1743–8.CrossRefGoogle Scholar
  14. 14.
    Newton RH, Meek KM. The integration of the corneal and limbal fibrils in the human eye. Biophys J. 1998;75(5):2508–12.CrossRefGoogle Scholar
  15. 15.
    Boote C, Dennis S, Newton RH, Puri H, Meek KM. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci. 2003;44(7):2941–8.CrossRefGoogle Scholar
  16. 16.
    Anderson Kevin, El-Sheikh Ahmed, Newson Timothy. Application of structural analysis to the mechanical behaviour of the cornea. J R Soc Interface. 2004;1(1):3–15.CrossRefGoogle Scholar
  17. 17.
    Studer H, Larrea X, Riedwyl H, Büchler P. Biomechanical model of human cornea based on stromal microstructure. J Biomech. 2010;43(5):836–42.CrossRefGoogle Scholar
  18. 18.
    Pandolfi A, Manganiello F. A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol. 2006;5(4):237–46.CrossRefGoogle Scholar
  19. 19.
    van Rij G, Waring GO. Changes in corneal curvature induced by sutures and incisions. Am J Ophthalmol. 1984;98(6):773–83.CrossRefGoogle Scholar
  20. 20.
    Yang YF, Zhang J, Wang XH, Wang Q, Mei J, Zeng YJ. Simulation of Corneal tissue mechanical deformation due to laser thermokeratoplasty: a finite element methods study. Australas Phys Eng Sci Med. 2009;32(4):220–5.CrossRefGoogle Scholar
  21. 21.
    Lanchares E, Calvo B, Cristòbal JA, Doblare M. Finite element simulation of arcuates for astigmatism correction. J Biomech. 2008;41:797–805.CrossRefGoogle Scholar
  22. 22.
    Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.CrossRefGoogle Scholar
  23. 23.
    Jonas JB, Kreissig I, Degenring R. Intraocular pressure after intravitreal injection of triamcinolone acetonide. Br J Ophthalmol. 2003;87(1):24–7.CrossRefGoogle Scholar
  24. 24.
    Gefen A, Shalom R, Elad D, Mandel Y. Biomechanical analysis of the keratoconic cornea. J Mech Behav Biomed Mater. 2009;2(3):224–36.CrossRefGoogle Scholar
  25. 25.
    Elsheikh A. Finite element modeling of corneal biomechanical behavior. J Refract Surg. 2010;26(4):289–300.CrossRefGoogle Scholar
  26. 26.
    Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol. 1999;83(10):1106–11.CrossRefGoogle Scholar
  27. 27.
    Jue B, Maurice D. The mechanical properties of the rabbit and human cornea. J Biomech. 1986;19(10):847–53.CrossRefGoogle Scholar
  28. 28.
    Crabb RA, Chau EP, Evans MC, Barocas VH, Hubel A. Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Eng. 2006;12:1565–75.CrossRefGoogle Scholar
  29. 29.
    Liu Y, Griffith M, Watsky MA, Forrester JV, Kuffova L, Grant D. Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromol. 2006;7(6):1819–28.CrossRefGoogle Scholar
  30. 30.
    Cho JH. Analysis of needle–tissue interaction for robotic corneal suturing. Master-degree thesis, POSTECH. 2016.Google Scholar

Copyright information

© Korean Society of Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations