Skip to main content
Log in

Methods for evaluating effects of unloader knee braces on joint health: a review

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The paper aims to provide a state-of-the-art review of methods for evaluating the effectiveness and effect of unloader knee braces on the knee joint and discuss their limitations and future directions. Unloader braces are prescribed as a non-pharmacological conservative treatment option for patients with medial knee osteoarthritis to provide relief in terms of pain reduction, returning to regular physical activities, and enhancing the quality of life. Methods used to evaluate and monitor the effectiveness of these devices on patients’ health are categorized into three broad categories (perception-, biochemical-, and morphology-based), depending upon the process and tools used. The main focus of these methods is on the short-term clinical outcome (pain or unloading efficiency). There is a significant technical, research, and clinical literature gap in understanding the short- and long-term consequences of these braces on the tissues in the knee joint, including the cartilage and ligaments. Future research directions may complement existing methods with advanced quantitative imaging (morphological, biochemical, and molecular) and numerical simulation are discussed as they offer potential in assessing long-term and post-bracing effects on the knee joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

JSN:

Joint space narrowing

KAM:

Knee adduction moment

ECM:

Extracellular matrix

EMG:

Electromyograms

VAS:

Visual Analogue Scale

KOOS:

Knee Osteoarthritis Outcome Score

QOLS:

Quality of Life Scale

WOMAC:

Western Ontario and McMaster Universities’ Arthritis Index

IPAQ:

International Physical Activity Questionnaire

IKDC:

International Knee Documentation Committee

JSW:

Joint space width

MJSW:

Minimum JSW

K–L:

Kellgren–Lawrence

WORMS:

Whole-Organ Magnetic Resonance Imaging Score

BLOKS:

Boston Leeds Osteoarthritis Knee Score

MOAK:

Osteoarthritis Knee Score

MOCART:

Magnetic resonance observation of the cartilage repair tissue

dGEMRIC:

Delayed gadolinium enhanced MRI of cartilage

References

  1. Helmick CG, Lawrence RC, Pollard RA, Lloyd E, Heyse SP. Arthritis and other rheumatic conditions: who is affected now, who will be affected later? Arthritis Rheum. 1995;8(4):203–11. https://doi.org/10.1002/art.1790080403.

    Google Scholar 

  2. Lawrence RC, Helmick CG, Arnett FC. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41(5):778–99. https://doi.org/10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V.

  3. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints—part I: tibial surface of the knee. J Biomech Eng. 1983;105(3):216–25. https://doi.org/10.1115/1.3138409.

    Google Scholar 

  4. Kellgren JH, Lawrence JS. Radiological assessment of rheumatoid arthritis. Ann Rheum Dis. 1957;16(4):485–93.

    Google Scholar 

  5. Johnson F, Leitl S, Waugh W. The distribution of load across the knee. A comparison of static and dynamic measurements. J Bone Joint Surg Br. 1980;62(3):346–9.

    Google Scholar 

  6. Smith AJ, Lloyd DG, Wood DJ. Pre-surgery knee joint loading patterns during walking predict the presence and severity of anterior knee pain after total knee arthroplasty. J Orthop Res. 2004;22(2):260–6. https://doi.org/10.1016/S0736-0266(03)00184-0.

    Google Scholar 

  7. Hunt MA, Birmingham TB, Giffin JR, Jenkyn TR. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. J Biomech. 2006;39(12):2213–20. https://doi.org/10.1016/j.jbiomech.2005.07.002.

    Google Scholar 

  8. Ellermann A, Zantop T, Rembitzki IV, Hartmut S, Liebau C, Best R. Biomechanical effect of unloader braces for medial osteoarthritis of the knee: a systematic review. Arch Orthop Trauma Surg. 2016;136:649–56.

    Google Scholar 

  9. Shull PB, Shultz R, Silder A. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013;46(1):122–8. https://doi.org/10.1016/j.jbiomech.2012.10.019.

    Google Scholar 

  10. Cheung RTH, Ho KKW, Au IPH, An WW, Zhang JHW, Chan ZYS, Deluzio K, Rainbow MJ. Immediate and short-term effects of gait retraining on the knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a randomized controlled trial. Osteoarthr Cartil. 2018;26(11):1479–86.

    Google Scholar 

  11. Kirane Y, Zifchock R, Gulotta L, Garrison G, Hillstrom H. Knee pain structure and function after one year of unloader bracing for medial knee osteoarthritis. Osteoarthr Cartil. 2010;18:S248–9. https://doi.org/10.1016/S1063-4584(10)60581-X.

    Google Scholar 

  12. Ramsey Dan K, Briem Kristin, Axe LS-M Michael J. A mechanical hypothesis for the effectiveness of knee bracing for medial compartment knee osteoarthritis. J Bone Joint Surg Am. 2007;89(11):2398–407. https://doi.org/10.2106/JBJS.F.01136.A.

    Google Scholar 

  13. Ostrander RV, Leddon CE, Hackel JG, O’Grady CP, Roth CA. Efficacy of unloader bracing in reducing symptoms of knee osteoarthritis. Am J Orthop (Belle Mead NJ). 2016;45(5):306–11. https://doi.org/10.1097/JSM.0000000000000086.

    Google Scholar 

  14. Ramsey DK, Briem K, Axe MJ, Snyder-Mackler L. A mechanical theory for the effectiveness of bracing for medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2007;89(11):2398–407. https://doi.org/10.2106/JBJS.F.01136.

    Google Scholar 

  15. Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA. 2001;286(2):188–95. https://doi.org/10.1001/jama.286.2.188.

    Google Scholar 

  16. Mauricio E, Sliepen M, Rosenbaum S. Acute effects of different orthotic interventions on knee loading parameters in knee osteoarthritis patients with varus malalignment. Knee. 2018;25(5):825–33.

    Google Scholar 

  17. Mistry DA, Chandratreya A, Lee PYF. An update on unloading knee braces in the treatment of unicompartmental knee osteoarthritis from the last 10 years: a literature review. Surg J (N Y). 2018;4(3):e110–8. https://doi.org/10.1055/s-0038-1661382 eCollection 2018 Jul.

    Google Scholar 

  18. Moyer RF, Birmingham TB, Bryant DM, Giffin JR, Marriott KA, Leitch KM. Biomechanical effects of valgus knee bracing: a systematic review and meta-analysis. Osteoarthr Cartil. 2015;23(2):178–88. https://doi.org/10.1016/j.joca.2014.11.018.

    Google Scholar 

  19. Segal NA, Anderson DD, Iyer KS. Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J Orthop Res. 2009;27(12):1562–8. https://doi.org/10.1002/jor.20936.

    Google Scholar 

  20. Goodwin JS, Creighton RA, Pietrosimone BG, Spang JT, Blackburn JT. Medial unloader braces and lateral heel wedges do not alter gait biomechanics in healthy young adults. J Sport Rehabil. https://doi.org/10.1123/jsr.2017-0106.

  21. Musumeci G. The effect of mechanical loading on articular cartilage. J Funct Morphol Kinesiol. 2016;1(2):154–61. https://doi.org/10.3390/jfmk1020154.

    Google Scholar 

  22. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43(4):635–40.

    Google Scholar 

  23. Chan DD, Cai L, Butz KD, Trippel SB, Nauman EA, Neu CP. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee. Sci Rep. 2016;6(1):19220. https://doi.org/10.1038/srep19220.

    Google Scholar 

  24. Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat. 2006;208(4):491–512. https://doi.org/10.1111/j.1469-7580.2006.00546.x.

    Google Scholar 

  25. Fithian DC, Ma Kelly, Mow VC. Material properties and structure–function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19–31. https://doi.org/10.2144/000113917.

    Google Scholar 

  26. Woo SL-Y, Buckwalter JA. Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18–20, 1987. J Orthop Res. 1988;6(6):907–31. https://doi.org/10.1002/jor.1100060615.

    Google Scholar 

  27. Thompson WO, Thaete FL, Fu FH, Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med. 1991;19(3):210–5. https://doi.org/10.1177/036354659101900302 discussion 215-216.

    Google Scholar 

  28. Voloshin AS, Wosk J. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng. 1983;5(2):157–61. https://doi.org/10.1016/0141-5425(83)90036-5.

    Google Scholar 

  29. Kulkarni VV, Chand K. Pathological anatomy of the aging meniscus. Acta Orthop Scand. 1975;46(1):135–40. https://doi.org/10.3109/17453677508989201.

    Google Scholar 

  30. Goldring SR. Role of bone in osteoarthritis pathogenesis. Med Clin North Am. 2009;93(1):25–35. https://doi.org/10.1016/j.mcna.2008.09.006.

    Google Scholar 

  31. Ding M. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues. Acta Orthop. 2010;81(sup340):1–53. https://doi.org/10.3109/17453671003619037.

    Google Scholar 

  32. Li G, Yin J, Gao J. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223. https://doi.org/10.1186/ar4405.

    Google Scholar 

  33. Lo GH, Niu J, McLennan CE. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthr Cartil. 2008;16(2):261–7. https://doi.org/10.1016/j.joca.2007.07.007.

    Google Scholar 

  34. Wang Y, Wluka AE, Pelletier JP. Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology. 2010;49(5):997–1004. https://doi.org/10.1093/rheumatology/keq034.

    Google Scholar 

  35. Kirkley a, Webster-Bogaert S, Litchfield R. The effect of bracing on varus gonarthrosis. J Bone Joint Surg Am. 1999;81(4):539–48. https://doi.org/10.3928/01477447-20110228-19.

    Google Scholar 

  36. Brouwer RW, van Raaij TM, Verhaar JAN, Coene LNJEM, Bierma-Zeinstra SMA. Brace treatment for osteoarthritis of the knee: a prospective randomized multi-centre trial. Osteoarthr Cartil. 2006;14(8):777–83. https://doi.org/10.1016/j.joca.2006.02.004.

    Google Scholar 

  37. Van Raaij TM, Reijman M, Brouwer RW, Bierma-Zeinstra SMA, Verhaar JAN. Medial knee osteoarthritis treated by insoles or braces a randomized trial. Clin Orthop Relat Res. 2010;468(7):1926–32. https://doi.org/10.1007/s11999-010-1274-z.

    Google Scholar 

  38. Duivenvoorden T, Brouwer RW, van Raaij TM, Verhagen AP, Verhaar JAN, Bierma-Zeinstra SMA. Braces and orthoses for treating osteoarthritis of the knee. Cochrane Database Syst Rev. 2015;3:CD004020. https://doi.org/10.1002/14651858.CD004020.pub3.

    Google Scholar 

  39. Hurley ST, Murdock GLH, Stanish WD, Hubley-Kozey CL. Is there a dose response for valgus unloader brace usage on knee pain, function, and muscle strength? Arch Phys Med Rehabil. 2012;93(3):496–502. https://doi.org/10.1016/j.apmr.2011.09.002.

    Google Scholar 

  40. Briggs K, Matheny L, Steadman J. Improvement in quality of life with use of an unloader knee brace in active patients with OA: a prospective cohort study. J Knee Surg. 2012;25(5):417–21. https://doi.org/10.1055/s-0032-1313748.

    Google Scholar 

  41. Rezaeian ZS, Smith MM, Skaife TL, Harvey WF, Gross KD, Hunter DJ. Does knee malalignment predict the efficacy of realignment therapy for patients with knee osteoarthritis? Int J Rheum Dis. 2015;20:1403–12. https://doi.org/10.1111/1756-185X.12696.

    Google Scholar 

  42. Thoumie P, Marty M, Avouac B, Pallez A, Vaumousse A, Pipet LPT, Monroche A, Graveleau N, Bonnin A, Amor CB, Coudeyre E. Effect of unloading brace treatment on pain and function in patients with symptomatic knee osteoarthritis: the ROTOR randomized clinical trial. Sci Rep. 2018;8, Article number: 10519.

  43. Hjartarson HF, Larsen ST. The clinical effect of an unloader brace on patients with osteoarthritis of the knee, a randomized placebo controlled trial with one year follow up. BMC Musculoskelet Disord. 2018;19(1):341. https://doi.org/10.1186/s12891-018-2256-7.

    Google Scholar 

  44. Terwee CB, Bouwmeester W, van Elsland SL, de Vet HCW, Dekker J. Instruments to assess physical activity in patients with osteoarthritis of the hip or knee: a systematic review of measurement properties. Osteoarthr Cartil. 2011;19(6):620–33. https://doi.org/10.1016/j.joca.2011.01.002.

    Google Scholar 

  45. van Poppel MNM, Chinapaw MJM, Mokkink LB. Physical activity questionnaires for adults: a systematic review of measurement properties. Sports Med. 2010;40(7):565–600. https://doi.org/10.2165/11531930-000000000-00000.

    Google Scholar 

  46. Forsén L, Loland NW, Vuillemin A. Self-administered physical activity questionnaires for the elderly: a systematic review of measurement properties. Sports Med. 2010;40(7):601–23. https://doi.org/10.2165/11531350-000000000-00000.

    Google Scholar 

  47. Hefti F, Muller W, Jakob RP, Staubli HU. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sport Traumatol Arthrosc. 1993;1(3–4):226–34. https://doi.org/10.1007/BF01560215.

    Google Scholar 

  48. Jacobi M, Reischl N, Rönn K, Magnusson RA, Gautier E, Jakob RP. Healing of the acutely injured anterior cruciate ligament: Functional treatment with the ACL-Jack, a dynamic posterior drawer brace. Adv Orthop. 2016. https://doi.org/10.1155/2016/1609067.

  49. Martin J a, Buckwalter J a. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21(319):1–7. https://doi.org/10.2106/JBJS.J.01935.

    Google Scholar 

  50. Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. J Orthop Res. 1997;15(3):450–5. https://doi.org/10.1002/jor.1100150319.

    Google Scholar 

  51. McErlain DD, Ulici V, Darling M. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res Ther. 2012;14(1):R26. https://doi.org/10.1186/ar3727.

    Google Scholar 

  52. Duryea J, Zaim S, Genant HK. New radiographic-based surrogate outcome measures for osteoarthritis of the knee. Osteoarthr Cartil. 2003;11(2):102–10. https://doi.org/10.1053/joca.2002.0866.

    Google Scholar 

  53. Kellgren J, Lawrence J. Radiological assessment of osteoarthritis. Ann Rheum Dis. 1957;16(4):494. https://doi.org/10.1136/ard.16.4.494.

    Google Scholar 

  54. Horlick SG, Loomer R. Valgus knee bracing for medial gonarthrosis. Clin J Sport Med. 1993;3(4):251–5. https://doi.org/10.1097/00042752-199310000-00006.

    Google Scholar 

  55. Komistek RD, Dennis DA, Northcut EJ, Wood A, Parker AW, Traina SM. An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel-strike of gait. J Arthroplasty. 1999;14(6):738–42. https://doi.org/10.1016/S0883-5403(99)90230-9.

    Google Scholar 

  56. Dennis AD, Komistek RD. An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel strike and midstance of gait. Acta Chir Orthop Traumatol Cech. 1999;66(6):323–7.

    Google Scholar 

  57. Oak SR, Ghodadra A, Winalski CS, Miniaci A, Jones MH. Radiographic joint space width is correlated with 4-year clinical outcomes in patients with knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil. 2013;21(9):1185–90. https://doi.org/10.1016/j.joca.2013.06.024.

    Google Scholar 

  58. Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, Bradshaw CR. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis. 1995;54(4):263–8. https://doi.org/10.1136/ard.54.4.263.

    Google Scholar 

  59. Eckstein F, Le Graverand MPH. Plain radiography or magnetic resonance imaging (MRI): which is better in assessing outcome in clinical trials of disease-modifying osteoarthritis drugs? Summary of a debate held at the World Congress of Osteoarthritis 2014. Semin Arthritis Rheum. 2015;45(3):251–6. https://doi.org/10.1016/j.semarthrit.2015.06.001.

    Google Scholar 

  60. Gale DR, Chaisson CE, Totterman SMS, Schwartz RK, Gale ME, Felson D. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthr Cartil. 1999;7(6):526–32. https://doi.org/10.1053/joca.1999.0256.

    Google Scholar 

  61. Peterfy CG. Role of MR imaging in clinical research studies. Semin Musculoskelet Radiol. 2001;5(4):365–78. https://doi.org/10.1055/s-2001-19045.

    Google Scholar 

  62. Eckstein F, Glaser C. Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol. 2004;8(212):329–53. https://doi.org/10.1055/s-2004-861579.

    Google Scholar 

  63. Jones G, Glisson M, Hynes K, Cicuttini F. Sex and site differences in cartilage development: A possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum. 2000;43(11):2543–9. https://doi.org/10.1002/1529-0131(200011)43:11<2543::AID-ANR23>3.0.CO;2-K.

  64. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11. https://doi.org/10.1136/ard.2006.066183.

    Google Scholar 

  65. Alizai H, Virayavanich W, Joseph GB. Cartilage lesion score: comparison of a quantitative assessment score with established semiquantitative MR scoring systems. Radiology. 2014;271(2):479–87. https://doi.org/10.1148/radiol.13122056.

    Google Scholar 

  66. Marlovits S, Striessnig G, Resinger CT. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol. 2004;52(3):310–9. https://doi.org/10.1016/j.ejrad.2004.03.014.

    Google Scholar 

  67. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23. https://doi.org/10.1016/j.ejrad.2005.08.007.

    Google Scholar 

  68. Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Investig Radiol. 2009;44(9):603–12. https://doi.org/10.1097/RLI.0b013e3181b5333c.

    Google Scholar 

  69. Dhollander A, Moens K, Van Der Maas J, Verdonk P, Almqvist KF, Victor J. Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (amic). Acta Orthop Belg. 2014;80(2):251–9.

    Google Scholar 

  70. Cotofana S, Eckstein F, Wirth W. In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging. Eur Radiol. 2011;21(6):1127–35. https://doi.org/10.1007/s00330-011-2057-y.

    Google Scholar 

  71. Wirth W, Duryea J, Hellio Le Graverand MP. Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the osteoarthritis initiative. Osteoarthr Cartil. 2013;21(1):117–25. https://doi.org/10.1016/j.joca.2012.10.017.

    Google Scholar 

  72. Felson DT, Radin EL. What causes knee osteoarthrosis: are different compartments susceptible to different risk factors? J Rheumatol. 1994;21(2):181–2.

    Google Scholar 

  73. Zhao D, Banks SA, apos D, Lima DD, Colwell CW, Fregly BJ. In vivo medial and lateral tibial loads during dynamic and high flexion activities. J Orthop Res. 2007;25(5):593–602.

    Google Scholar 

  74. Andriacchi TP, Mündermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006;18(5):514–8. https://doi.org/10.1097/01.bor.0000240365.16842.4e.

    Google Scholar 

  75. Hubley-Kozey CL, Hill NA, Rutherford DJ, Dunbar MJ, Stanish WD. Co-activation differences in lower limb muscles between asymptomatic controls and those with varying degrees of knee osteoarthritis during walking. Clin Biomech. 2009;24(5):407–14. https://doi.org/10.1016/j.clinbiomech.2009.02.005.

    Google Scholar 

  76. Rudolph KS, Schmitt LC, Lewek MD. Age-related changes in strength, joint laxity, and walking patterns: are they related to knee osteoarthritis? Phys Ther. 2007;87(11):1422–32. https://doi.org/10.2522/ptj.20060137.

    Google Scholar 

  77. Rutherford DJ, Hubley-Kozey CL, Stanish WD, Dunbar MJ. Neuromuscular alterations exist with knee osteoarthritis presence and severity despite walking velocity similarities. Clin Biomech. 2011;26(4):377–83. https://doi.org/10.1016/j.clinbiomech.2010.11.018.

    Google Scholar 

  78. Lindenfeld TN, Hewett TE, Andriacchi TP. Joint loading with valgus bracing in patients with varus gonarthrosis. Clin Orthop Relat Res. 1997;344:290–7.

    Google Scholar 

  79. Hewett TE, Noyes FR, Barber-Westin SD, Heckmann TP. Decrease in knee joint pain and increase in function in patients with medial compartment arthrosis: a prospective analysis of valgus bracing. Orthopedics. 1998;21(2):131–8. https://doi.org/10.1128/AAC.03728-14.

    Google Scholar 

  80. Schmalz T, Knopf E, Drewitz H, Blumentritt S. Analysis of biomechanical effectiveness of valgus-inducing knee brace for osteoarthritis of knee. J Rehabil Res Dev. 2010;47(5):419–29. https://doi.org/10.1682/JRRD.2009.05.0067.

    Google Scholar 

  81. Toriyama M, Deie M, Shimada N. Effects of unloading bracing on knee and hip joints for patients with medial compartment knee osteoarthritis. Clin Biomech. 2011;26(5):497–503. https://doi.org/10.1016/j.clinbiomech.2011.01.003.

    Google Scholar 

  82. Anderson IA, MacDiarmid AA, Harris ML, Gillies RM, Phelps R, Walsh WR. A novel method for measuring medial compartment pressures within the knee joint in-vivo. J Biomech. 2003;36(9):1391–5. https://doi.org/10.1016/S0021-9290(03)00158-1.

    Google Scholar 

  83. Kutzner I, Küther S, Heinlein B. The effect of valgus braces on medial compartment load of the knee joint—in vivo load measurements in three subjects. J Biomech. 2011;44(7):1354–60. https://doi.org/10.1016/j.jbiomech.2011.01.014.

    Google Scholar 

  84. Ramsey DK. A mechanical theory for the effectiveness of bracing for medial compartment osteoarthritis of the knee. J Bone Joint Surg. 2007;89(11):2398. https://doi.org/10.2106/JBJS.F.01136.

    Google Scholar 

  85. Pagani CHF, Hinrichs M, Brüggemann GP. Kinetic and kinematic changes with the use of valgus knee brace and lateral wedge insoles in patients with medial knee osteoarthritis. J Orthop Res. 2012;30(7):1125–32. https://doi.org/10.1002/jor.22032.

    Google Scholar 

  86. Esrafilian A, Karimi MT, Eshraghi A. Design and evaluation of a new type of knee orthosis to align the mediolateral angle of the knee joint with osteoarthritis. Adv Orthop. 2012;2012:1–6. https://doi.org/10.1155/2012/104927.

    Google Scholar 

  87. Jones RK, Nester CJ, Richards JD. A comparison of the biomechanical effects of valgus knee braces and lateral wedged insoles in patients with knee osteoarthritis. Gait Posture. 2013;37(3):368–72. https://doi.org/10.1016/j.gaitpost.2012.08.002.

    Google Scholar 

  88. Larsen BL, Jacofsky MC, Brown JA, Jacofsky DJ. Valgus bracing affords short-term treatment solution across walking and sit-to-stand activities. J Arthroplasty. 2013;28(5):792–7. https://doi.org/10.1016/j.arth.2012.09.022.

    Google Scholar 

  89. Pollo FE, Otis JC, Backus SI, Warren RF, Wickiewicz TL. Reduction of medial compartment loads with valgus bracing of the osteoarthritic knee. Am J Sports Med. 2002;30(3):414–21. https://doi.org/10.1177/03635465020300031801.

    Google Scholar 

  90. Laroche D, Morisset C, Fortunet C, Gremeaux V, Maillefert JF, Ornetti P. Biomechanical effectiveness of a distraction-rotation knee brace in medial knee osteoarthritis: preliminary results. Knee. 2014;21(3):710–6. https://doi.org/10.1016/j.knee.2014.02.015.

    Google Scholar 

  91. Dessery Y, Belzile ÉL, Turmel S, Corbeil P. Comparison of three knee braces in the treatment of medial knee osteoarthritis. Knee. 2014;21(6):1107–14. https://doi.org/10.1016/j.knee.2014.07.024.

    Google Scholar 

  92. Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin Biomech. 2009;24(10):833–41. https://doi.org/10.1016/j.clinbiomech.2009.08.005.

    Google Scholar 

  93. Lewek MD, Rudolph KS, Snyder-Mackler L. Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthr Cartil. 2004;12(9):745–51. https://doi.org/10.1016/j.joca.2004.05.005.

    Google Scholar 

  94. Messier SP, Loeser RF, Hoover JL, Semble EL, Wise CM. Osteoarthritis of the knee: effects on gait, strength, and flexibility. Arch Phys Med Rehabil. 1992;73:29–36.

    Google Scholar 

  95. Childs JD, Sparto PJ, Fitzgerald GK, Bizzini M, Irrgang JJ. Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech. 2004;19(1):44–9. https://doi.org/10.1016/j.clinbiomech.2003.08.007.

    Google Scholar 

  96. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sport Traumatol Arthrosc. 2001;9(2):62–71. https://doi.org/10.1007/s001670000166.

    Google Scholar 

  97. Hodge WA, Carlson KL, Fijan RS. Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg. 1989;71(9):1378–86.

    Google Scholar 

  98. Schmitt LC, Rudolph KS. Influences on knee movement strategies during walking in persons with medial knee osteoarthritis. Arthritis Care Res. 2007;57(6):1018–26. https://doi.org/10.1002/art.22889.

    Google Scholar 

  99. Segal NA. Bracing and orthoses: a review of efficacy and mechanical effects for tibiofemoral osteoarthritis. PM R. 2012;4(5 SUPPL.):S89–96. https://doi.org/10.1016/j.pmrj.2012.01.018.

    Google Scholar 

  100. Ramsey DK, Russell ME. Unloader braces for medial compartment knee osteoarthritis: implications on mediating progression. Sports Health. 2009;1(5):416–26. https://doi.org/10.1177/1941738109343157.

    Google Scholar 

  101. Briem K, Ramsey DK. The role of bracing. Sports Med Arthrosc. 2013;21(1):11–7. https://doi.org/10.1097/JSA.0b013e31827562b5.

    Google Scholar 

  102. Pollo FE, Jackson RW. Knee bracing for unicompartmental osteoarthritis. J Am Acad Orthop Surg. 2006;14(1):5–11. https://doi.org/10.1177/03635465020300031801.

    Google Scholar 

  103. Fantini Pagani CH, Willwacher S, Kleis B, Brüggemann GP. Influence of a valgus knee brace on muscle activation and co-contraction in patients with medial knee osteoarthritis. J Electromyogr Kinesiol. 2013;23(2):490–500. https://doi.org/10.1016/j.jelekin.2012.10.007.

    Google Scholar 

  104. Callaghan MJ, Parkes MJ, Felson DT. The effect of knee braces on quadriceps strength and inhibition in subjects with patellofemoral osteoarthritis. J Orthop Sport Phys Ther. 2016;46(1):19–25. https://doi.org/10.2519/jospt.2016.5093.

    Google Scholar 

  105. Rauscher I, Stahl R, Cheng J. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology. 2008;249(2):591–600. https://doi.org/10.1148/radiol.2492071870.

    Google Scholar 

  106. Luke AC, Stehling C, Stahl R. High-field magnetic resonance imaging assessment of articular cartilage before and after marathon running: does long-distance running lead to cartilage damage? Am J Sports Med. 2010;38(11):2273–80. https://doi.org/10.1177/0363546510372799.

    Google Scholar 

  107. Stehling C, Luke A, Stahl R. Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon. Skelet Radiol. 2011;40(6):725–35. https://doi.org/10.1007/s00256-010-1058-2.

    Google Scholar 

  108. Souza RB, Kumar D, Calixto N. Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil. 2014;22(10):1367–76. https://doi.org/10.1016/j.joca.2014.04.017.

    Google Scholar 

  109. Calixto NE, Kumar D, Subburaj K. Zonal differences in meniscus MR relaxation times in response to in vivo static loading in knee osteoarthritis. J Orthop Res. 2016;34(2):249–61. https://doi.org/10.1002/jor.23004.

    Google Scholar 

  110. Subburaj K, Kumar D, Souza RB. The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults. Am J Sports Med. 2012;40(9):2134–41. https://doi.org/10.1177/0363546512449816.

    Google Scholar 

  111. Subburaj K, Souza RB, Wyman BT. Changes in MR relaxation times of the meniscus with acute loading: an in vivo pilot study in knee osteoarthritis. J Magn Reson Imaging. 2015;41(2):536–43. https://doi.org/10.1002/jmri.24546.

    Google Scholar 

  112. Burstein D, Velyvis J, Scott KT. Protocol issues for delayed Gd(DTPA)2-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41. https://doi.org/10.1002/1522-2594(200101)45:1<36::AID-MRM1006>3.0.CO;2-W.

  113. Bashir A, Gray ML, Burstein D. Gd-DTPA2− as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73. https://doi.org/10.1002/mrm.1910360504.

    Google Scholar 

  114. Tiderius CJ, Jessel R, Kim YJ, Burstein D. Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med. 2007;57(4):803–5. https://doi.org/10.1002/mrm.21190.

    Google Scholar 

  115. Sigurdsson U, Siversson C, Lammentausta E, Svensson J, Tiderius C-J, Dahlberg LE. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskelet Disord. 2014;15(1):226. https://doi.org/10.1186/1471-2474-15-226.

    Google Scholar 

  116. Shapiro EM, Borthakur A, Gougoutas A, Reddy R. 23NA MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med. 2002;47(2):284–91. https://doi.org/10.1002/mrm.10054.

    Google Scholar 

  117. Newbould RD, Miller SR, Tielbeek JAW. Reproducibility of sodium MRI measures of articular cartilage of the knee in osteoarthritis. Osteoarthr Cartil. 2012;20(1):29–35. https://doi.org/10.1016/j.joca.2011.10.007.

    Google Scholar 

  118. Gohal C, Shanmugaraj A, Tate P, Horner NS, Bedi A, Adili A, Khan M. Effectiveness of valgus offloading knee braces in the treatment of medial compartment knee osteoarthritis: a systematic review. Sports Health. 2018;10(6):500–14.

    Google Scholar 

  119. Andriacchi TP. Dynamics of knee malalignment. Orthop Clin North Am. 1994;25(3):395–403. https://doi.org/10.1002/JOR.1100090114.

    Google Scholar 

  120. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26(8):969–90. https://doi.org/10.1016/0021-9290(93)90058-M.

    Google Scholar 

  121. Briem K, Snyder-Mackler L. Proximal gait adaptations in medial knee OA. J Orthop Res. 2009;27(1):78–83. https://doi.org/10.1002/jor.20718.

    Google Scholar 

  122. Neville SR, Brandon SCE, Brown MJ, Deluzio KJ. Validation of method for analysing mechanics of unloader brace for medial knee osteoarthritis. J Biomech. 2018;25(76):253–8.

    Google Scholar 

  123. Brand R a. Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop J. 2005;25:82–94.

    Google Scholar 

  124. Harrison MH, Schajowicz F, Trueta J. Osteoarthritis of the hip: a study of the nature and evolution of the disease. J Bone Joint Surg Br. 1953;35–B:598–626.

    Google Scholar 

  125. Andriacchi TP, Koo S, Scanlan SF. Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am. 2009;91(Suppl 1):95–101. https://doi.org/10.2106/JBJS.H.01408.

    Google Scholar 

  126. Vincent KR, Conrad BP, Fregly BJ, Vincent HK. The pathophysiology of osteoarthritis: a mechanical perspective on the knee joint. PM R. 2012;4(5 SUPPL.):S3–9. https://doi.org/10.1016/j.pmrj.2012.01.020.

    Google Scholar 

  127. Kaplan JT, Neu CP, Drissi H, Emery NC, Pierce DM. Cyclic loading of human articular cartilage: the transition from compaction to fatigue. J Mech Behav Biomed Mater. 2017;65:734–42. https://doi.org/10.1016/j.jmbbm.2016.09.040.

    Google Scholar 

  128. Cusin E, Honeine JL, Schieppati M, Rougier PR. A simple method for measuring the changeable mechanical action of unloader knee braces for osteoarthritis. IRBM. 2018;39(2):136–42.

    Google Scholar 

  129. Kiviranta P, Rieppo J, Korhonen RK, Julkunen P, Töyräs J, Jurvelin JS. Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J Orthop Res. 2006;24(4):690–9. https://doi.org/10.1002/jor.20107.

    Google Scholar 

  130. Musumeci G, Loreto C, Leonardi R. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2013;31(3):274–84. https://doi.org/10.1007/s00774-012-0414-9.

    Google Scholar 

  131. Oettmeier R, Arokoski J, Roth AJ, Helminen HJ, Tammi M, Abendroth K. Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous running training. J Bone Miner Res. 1992;7(2 S):S419–24. https://doi.org/10.1002/jbmr.5650071410.

    Google Scholar 

  132. Young DR, Richardson DW, Markel MD, Nunamaker DM. Mechanical and morphometric analysis of the third carpal bone of Thoroughbreds. Am J Vet Res. 1991;52(3):402–9.

    Google Scholar 

  133. Rucci N, Rufo A, Alamanou M, Teti A. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem. 2007;100(2):464–73. https://doi.org/10.1002/jcb.21059.

    Google Scholar 

  134. Carmeliet G, Vico L, Bouillon R. Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr. 2001;11(1–3):131–44.

    Google Scholar 

  135. Lee JY, Harvey WF, Price LL, Paulus JK, Dawson-Hughes B, McAlindon TE. Relationship of bone mineral density to progression of knee osteoarthritis. Arthritis Rheum. 2013;65(6):1541–6. https://doi.org/10.1002/art.37926.

    Google Scholar 

  136. Zhang Y, Hannan MT, Chaisson CE. Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham study. J Rheumatol. 2000;27(4):1032–7.

    Google Scholar 

  137. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105. https://doi.org/10.1016/j.medengphy.2006.11.002.

    Google Scholar 

  138. Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr. 2016;42(1):88. https://doi.org/10.1186/s13052-016-0297-9.

    Google Scholar 

  139. Muhit AA, Arora S, Ogawa M. Peripheral quantitative CT (pQCT) using a dedicated extremity cone-beam CT scanner. Proc SPIE. 2013;8672:867203–7. https://doi.org/10.1117/12.2006939.

    Google Scholar 

  140. Symeonidis I, Kavadarli G, Schuller E, Peldschus S. Simulation of biomechanical experiments in opensim. In: IFMBE Proceedings, vol. 29. 2010; p. 107–110.

  141. Hall M, Laura E, Diamond LE, Lenton GK, Pizzolato C, Saxby JD. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces. Gait Posture. 2019;68:55–62. https://doi.org/10.1016/j.gaitpost.2018.11.009.

    Google Scholar 

  142. Delp SL, Anderson FC, Arnold AS. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50. https://doi.org/10.1109/TBME.2007.901024.

    Google Scholar 

  143. Ji Z, Wang H, Jiang G, Li L. Analysis of muscle activity utilizing bench presses in the AnyBody simulation modelling system. Model Simul Eng. 2016. https://doi.org/10.1155/2016/3649478.

Download references

Acknowledgments

KS and YHDL would like to acknowledge the funding support by the Changi General Hospital - Singapore University of Technology and Design under the Health Tech Innovation Fund, award no: CGH-SUTD-2015-003. The funding agency had no role in study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in the design of the study, drafted the manuscript, and read and approved the final manuscript.

Corresponding author

Correspondence to Rizuwana Parween.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parween, R., Shriram, D., Mohan, R.E. et al. Methods for evaluating effects of unloader knee braces on joint health: a review. Biomed. Eng. Lett. 9, 153–168 (2019). https://doi.org/10.1007/s13534-019-00094-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00094-z

Keywords

Navigation