Biomedical Engineering Letters

, Volume 6, Issue 3, pp 104–112 | Cite as

A review of electrodes for the electrical brain signal recording

  • Changkyun Im
  • Jong-Mo SeoEmail author
Review Article
Part of the following topical collections:
  1. Implantable Neural Interface


Brain is complex organ composed of numerous glial cells and neurons to convey information using chemical and electrical signals. Neural interface technology using the electrical brain signals has attracted great attention for the clinical and experimental applications. Electrode as the neural interface is the most important part in stimulating neural cells or recording neural activities. In this paper, we provide an overview of electrodes for recording the electrical brain signal. The noninvasive electrodes are primarily used to capture electroencephalogram (EEG) from outside the skull while the implantable electrodes are employed to measure electrocorticogram (ECoG), local field potential (LFP) or spike activity. Recent progress in microfabrication technology enables the development of on-board electrode that combines the entire signal processing including amplification, filtering, and digitization. This will contribute to diagnostic and therapeutic application of the neural interface for restoring physical, psychological and social functions by improving motor, sensory or cognitive abilities.


Neural recording system Recording electrode EEG ECoG LFP Single-unit recording Multi-unit recording 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Caton R. Electrical currents of the brain. J Nerv Ment Dis. 1875; 2(4): 610.Google Scholar
  2. [2]
    Haas LF. Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg PS. 2003; 74(1): 9.CrossRefGoogle Scholar
  3. [3]
    Woldring S, Dirken MN. Spontaneous unit-activity in the superficial cortical layers. Acta Physiol Pharm N. 1950; 1(3): 369–79.Google Scholar
  4. [4]
    Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959; 148(3): 574–91.CrossRefGoogle Scholar
  5. [5]
    Marg E, Adams JE. Indwelling multiple micro-electrodes in the brain. Electroen Clin Neuro. 1967; 23(3): 277–80.CrossRefGoogle Scholar
  6. [6]
    Asano E, Juhász C, Shah A, Muzik O, Chugani DC, Shah J, Sood S, Chugani HT. Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia. 2005; 46(7): 1086–97.CrossRefGoogle Scholar
  7. [7]
    Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr Clin Neurophysiol. 1966; 20(1): 1–18.Google Scholar
  8. [8]
    Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol. 1966; 20(1): 19–37.CrossRefGoogle Scholar
  9. [9]
    Klee MR, Offenloch K, Tigges J. Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science. 1965; 147(3657): 519–21.CrossRefGoogle Scholar
  10. [10]
    Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005; 116(4): 799–806.CrossRefGoogle Scholar
  11. [11]
    Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society. J Clin Neurophysiol. 1994; 11(1): 111–3.CrossRefGoogle Scholar
  12. [12]
    Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  13. [13]
    Griss P, Enoksson P, Tolvanen-Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. J Microelectromech S. 2001; 10(1): 10–6.CrossRefGoogle Scholar
  14. [14]
    Chiou J-C, Ko L-W, Lin C-T, Hong C-T, Jung T-P, Liang S-F, Jeng J-L. Using novel MEMS EEG sensors in detecting drowsiness application. Conf Proc IEEE Biomed Circuits Syst Soc. 2006; 33–6.Google Scholar
  15. [15]
    Ruffini G, Dunne S, Fuentemilla L, Grau C, Farrés E, Marco-Pallarés J, Watts PCP, Silva SRP. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensor Actuat A-Phys. 2008; 144(2): 275–9.CrossRefGoogle Scholar
  16. [16]
    Huang YJ, Wu CY, Wong AMK, Lin BS. Novel active combshaped dry electrode for EEG measurement in hairy site. IEEE T Biomed Eng. 2015; 62(1): 256–63.CrossRefGoogle Scholar
  17. [17]
    Chen Y-H, de Beeck MO, Vanderheyden L, Carrette E, Mihajlovic V, Vanstreels K, Grundlehner B, Gadeyne S, Boon P, Van Hoof C. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors. 2014; 14(12): 23758–80.CrossRefGoogle Scholar
  18. [18]
    Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sensor Actuat A-Phys. 2012; 174: 96–102.CrossRefGoogle Scholar
  19. [19]
    Grozea C, Voinescu CD, Fazli S. Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J Neural Eng. 2011; 8(2).CrossRefGoogle Scholar
  20. [20]
    Liao L-D, Wang I-J, Chen S-F, Chang J-Y, Lin C-T. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors. 2011; 11(6): 5819–34.CrossRefGoogle Scholar
  21. [21]
    Mota AR, Duarte L, Rodrigues D, Martins AC, Machado AV, Vaz F, Fiedler P, Haueisen J, Nóbrega JM, Fonseca C. Development of a quasi-dry electrode for EEG recording. Sensors Actuat A-Phys. 2013; 199: 310–7.CrossRefGoogle Scholar
  22. [22]
    Peng H-L, Liu J-Q, Dong Y-Z, Yang B, Chen X, Yang C-S. Parylene-based flexible dry electrode for bioptential recording. Sensors Actuat B-Chem. 2016; 231: 1–11.CrossRefGoogle Scholar
  23. [23]
    Harland CJ, Clark TD, Prance RJ. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors. Appl Phys Lett. 2002; 81(17): 3284–6.CrossRefGoogle Scholar
  24. [24]
    Sullivan TJ, Deiss SR, Cauwenberghs G. A low-noise, noncontact EEG/ECG sensor. Conf Proc IEEE Biomed Circ S Soc. 2007; 154–7.Google Scholar
  25. [25]
    Oehler M, Neumann P, Becker M, Curio G, Schilling M. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. Conf Proc IEEE Eng Med Biol Soc. 2008; 4495–8.Google Scholar
  26. [26]
    Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. Conf Proc IEEE Wearable Implantable Body Sens Netw. 2009; 246–50.Google Scholar
  27. [27]
    Renshaw B, Forbes A, Morison BR. Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J Neurophysiol. 1940; 3(1): 74–105.Google Scholar
  28. [28]
    Dowben RM, Rose JE. A metal-filled microelectrode. Science. 1953; 118(3053): 22–4.CrossRefGoogle Scholar
  29. [29]
    Green JD. A simple microelectrode for recording from the central nervous system. Nature. 1958; 182(4640): 962.CrossRefGoogle Scholar
  30. [30]
    Wolbarsht ML, Macnichol EF, Wagner HG. Glass insulated platinum microelectrode. Science. 1960; 132(3436): 1309–10.CrossRefGoogle Scholar
  31. [31]
    Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003; 31(7): 879–90.CrossRefGoogle Scholar
  32. [32]
    Dymond AM, Kaechele LE, Jurist JM, Crandall PH. Brain tissue reaction to some chronically implanted metals. J Neurosurg. 1970; 33(5): 574–80.CrossRefGoogle Scholar
  33. [33]
    Abeles M, Goldstein MH. Multispike train analysis. Proc IEEE. 1977; 65(5): 762–73.CrossRefGoogle Scholar
  34. [34]
    Wörgötter F, Daunicht WJ, Eckmiller R. An on-line spike form discriminator for extracellular recordings based on an analog correlation technique. J Neurosci Methods. 1986; 17(2-3): 141–51.CrossRefGoogle Scholar
  35. [35]
    Salganicoff M, Sarna M, Sax L, Gerstein GL. Unsupervised waveform classification for multi-neuron recordings: a realtime, software-based system. I. Algorithms and implementation. J Neurosci Methods. 1988; 25(3): 181–7.CrossRefGoogle Scholar
  36. [36]
    Kreiter AK, Aertsen AM, Gerstein GL. A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings. J Neurosci Methods. 1989; 30(1): 59–69.CrossRefGoogle Scholar
  37. [37]
    Jansen RF, Ter Maat A. Automatic wave form classification of extracellular multineuron recordings. J Neurosci Methods. 1992; 41(2): 123–32.CrossRefGoogle Scholar
  38. [38]
    Wheeler BC, Heetderks WJ. A comparison of techniques for classification of multiple neural signals. IEEE T Biomed Eng. 1982; 29(12): 752–9.CrossRefGoogle Scholar
  39. [39]
    McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods. 1983; 8(4): 391–7.CrossRefGoogle Scholar
  40. [40]
    Recce M, O’Keefe J. The tetrode: a new technique for multiunit extracellular recording. Soc Neurosci Abstr. 1989; 15(2): 1250.Google Scholar
  41. [41]
    Hoogerwerf AC, Wise KD. A three-dimensional microelectrode array for chronic neural recording. IEEE T Biomed Eng. 1994; 41(12): 1136–46.CrossRefGoogle Scholar
  42. [42]
    Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater. 2012; 11(12): 1065–73.CrossRefGoogle Scholar
  43. [43]
    Thelin J, Jörntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, Linsmeier CE. Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One. 2011; doi: 10.1371/journal.pone.0016267.Google Scholar
  44. [44]
    Jones KE, Campbell PK. Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4): 423–37.CrossRefGoogle Scholar
  45. [45]
    Rousche PJ, Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods. 1998; 82(1): 1–15.CrossRefGoogle Scholar
  46. [46]
    Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK. Ceramic-based multisite electrode arrays for chronic singleneuron recording. IEEE T Biomed Eng. 2004; 51(4): 647–56.CrossRefGoogle Scholar
  47. [47]
    Burmeister JJ, Moxon K, Gerhardt GA. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem. 2000. 72(1):187–92.CrossRefGoogle Scholar
  48. [48]
    Wester BA, Lee RH, La Placa MC. Development and characterization of in vivo flexible electrodes compatible with large tissue displacements. J Neural Eng. 2009; doi: 10.1088/ 1741-2560/6/2/024002.Google Scholar
  49. [49]
    Pellinen D, Moon T, Vetter R, Miriani R, Kipke D. Multifunctional flexible parylene-based intracortical microelectrodes. Conf Proc IEEE Eng Med Biol Soc. 2005; 5: 5272–5.Google Scholar
  50. [50]
    Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005; 5(5): 519–23.CrossRefGoogle Scholar
  51. [51]
    Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E. 3D Parylene sheath neural probe for chronic recordings. J Neural Eng. 2013; doi: 10.1088/1741-2560/10/4/045002.Google Scholar
  52. [52]
    Lee K, Singh A, He J, Massia S, Kim B, Raupp G. Polyimide based neural implants with stiffness improvement. Sensor Actuat B-Chem. 2004; 102(1): 67–72.CrossRefGoogle Scholar
  53. [53]
    Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001; 48(3): 361–71.CrossRefGoogle Scholar
  54. [54]
    Takeuchi S, Suzuki T, Mabuchi K, Fujita H. 3D flexible multichannel neural probe array. J Micromech Microeng, 2004; 14(1): 104–7.CrossRefGoogle Scholar
  55. [55]
    Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, Tsang S, Chen YF, Lin SY. Design and fabrication of a polyimidebased microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. J Neurosci Methods. 2009; 182(1): 6–16.CrossRefGoogle Scholar
  56. [56]
    Xiang Z, Yen S-C, Xue N, Sun T, Tsang WM, Zhang S. Ultrathin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng. 2014; doi:10.1088/0960-1317/24/6/065015.Google Scholar
  57. [57]
    Shen W, Karumbaiah L, Liu X, Saxena T, Chen S, Patkar R, Bellamkonda RV, Allen MG. Extracellular matrix-based intracortical microelectrodes: toward a microfabricated neural interface based on natural materials. Microsystems Nanoeng. 2015; doi:10.1038/micronano.2015.10.Google Scholar
  58. [58]
    Altuna A, Menendez de la Prida L, Bellistri E, Gabriel G, Guimerá A, Berganzo J, Villa R, Fernández LJ. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron. 2012; 37(1): 1–5.CrossRefGoogle Scholar
  59. [59]
    Shin H, Kim S, Chio N, Lee HJ, Yoon E-S, Cho I-J. 3D multifunctional neural probe array for mapping functional connectivities in a 3D neuron chip. Conf Proc IEEE Micro Electro Mech Syst. 2016; doi: 10.1109/MEMSYS.2016.7421625.Google Scholar
  60. [60]
    Lee K, He J, Clement R, Massia S, Kim B. Biocompatible benzocyclobutene (BCB)-based neural implants with microfluidic channel. Biosens Bioelectron. 2004; 20(2): 404–7.CrossRefGoogle Scholar
  61. [61]
    Zhu H, He J, Kim B. High-yield benzocyclobutene (BCB) based neural implants for simultaneous intra-and extracortical recording in rats. Conf Proc IEEE Eng Med Biol Soc. 2004; 6: 4341–4.Google Scholar
  62. [62]
    Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE T Biomed Eng. 2012; 59(7): 2085–94.CrossRefGoogle Scholar
  63. [63]
    Lind G, Linsmeier CE, Thelin J, Schouenborg J. Gelatineembedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes. J Neural Eng. 2010; doi: 10.1088/1741-2560/7/4/046005.Google Scholar
  64. [64]
    Tien LW, Wu F, Tang-Schomer MD, Yoon E, Omenetto FG, Kaplan DL. Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes. Adv Funct Mater. 2013; 23(25): 3185–93.CrossRefGoogle Scholar
  65. [65]
    Adrega T, Lacour SP. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng. 2010; doi:10.1088/0960-1317/20/5/055025.Google Scholar
  66. [66]
    Liang Guo, Guvanasen GS, Xi Liu, Tuthill C, Nichols TR, De Weerth SP. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Syst. 2013; 7(1): 1–10.CrossRefGoogle Scholar
  67. [67]
    Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Biosens Bioelectron. 2009; 24(10): 3067–72.CrossRefGoogle Scholar
  68. [68]
    Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; doi: 10.1088/1741-2560/6/3/036003.Google Scholar
  69. [69]
    Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 2011; 54(1): 203–12.CrossRefGoogle Scholar
  70. [70]
    Park DW, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, Hayat MR, Atry F, Frye ST, Pashaie R, Thongpang S, Ma Z, Williams JC. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014; doi: 10.1038/ncomms6258.Google Scholar
  71. [71]
    Lee CJ, Oh SH, Song JK, Kim SJ. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material. Mater Sci Eng C-Bio S. 2004; 24(1-2): 265–8.CrossRefGoogle Scholar
  72. [72]
    Ochoa M, Wei P, Wolley AJ, Otto KJ, Ziaie B. A hybrid PDMSParylene subdural multi-electrode array. Biomed Microdevices. 2013; 15(3): 437–43.CrossRefGoogle Scholar
  73. [73]
    Henle C, Hassler C, Kohler F, Schuettler M, Stieglitz T. Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system. Conf Proc IEEE Eng Med Biol Soc. 2011; 640–3.Google Scholar
  74. [74]
    Henle C, Raab M, Cordeiro JG, Doostkam S, Schulze-Bonhage A, Stieglitz T, Rickert J. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevices. 2011; 13(1): 59–68.CrossRefGoogle Scholar
  75. [75]
    Yamakawa T, Yamakawa T, Aou S, Ishizuka S, Suzuki M, Fujii M. Subdural electrode array manipulated by a shape memory alloy guidewire for minimally-invasive electrocorticogram recording. Conf Proc IEEE World Autom Cong. 2010; 1–6.Google Scholar
  76. [76]
    Yu KJ, Kuzum D, Hwang SW, Kim BH, Juul H, Kim NH, Won SM, Chiang K, Trumpis M, Richardson AG, Cheng H, Fang H, Thompson M, Bink H, Talos D, Seo KJ, Lee HN, Kang SK, Kim JH, Lee JY, Huang Y, Jensen FE, Dichter MA, Lucas TH, Viventi J, Litt B, Rogers JA. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater. 2016; 15(7): 782–91.CrossRefGoogle Scholar
  77. [77]
    Rowland V, Macintyre WJ, Bidder TG. The production of brain lesions with electric currents. II. Bidirectional currents. J Neurosurg. 1960; 17: 55–69.Google Scholar
  78. [78]
    Robinson FR, Johnson MT. Histopathological studies of tissue reactions to various metals implanted in cat brains. ASD Tech Rep. 1961; 61(397): 13.Google Scholar
  79. [79]
    Bates JI, Reiners CR, Horn RC. A discussion of the uses of metals in surgery and an experimental study of the use of zirconium. Surg Gynecol Obstet. 1948; 87(2): 213–20.Google Scholar
  80. [80]
    Beder OE, Eade G. An investigation of tissue tolerance to titanium metal implants in dogs. Surgery. 1956; 39(3): 470–3.Google Scholar
  81. [81]
    Clarke EGC. Discussion on metals and synthetic materials in relation to tissues. P Roy Soc Med. 1953; 46(8): 641–52.Google Scholar
  82. [82]
    Cooper R, Crow HJ. Toxic effects of intra-cerebral electrodes. Med Biol Eng. 1966; 4(6): 575–81.CrossRefGoogle Scholar
  83. [83]
    Bickford RG, Fischer G, Sayre GP. Histologic changes in the cats brain after introduction of metallic and plastic coated wire used in electro-encephalography. P Staff M Mayo Clin. 1957; 32(1): 14–21.Google Scholar
  84. [84]
    Babb TL, Kupfer W. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp Neurol. 1984; 86(2): 171–82.CrossRefGoogle Scholar
  85. [85]
    Loeb GE, Richmond FJR. BION implants for therapeutic and functional electrical stimulation. In: Chapin JK, Moxon KA, editors. Neural prostheses for restoration of sensory and motor function. Boca Raton: CRC Press; 2000. pp. 75–98.Google Scholar
  86. [86]
    Patan MK. Titanium nitride as an electrode material for high charge density applications. PhD Dissertation, New Jersey, New Jersey Institute of Technology. 2007.Google Scholar
  87. [87]
    Mohanan P, Rathinam K. Biocompatibility studies on silicone rubber. Conf Proc IEEE Eng Med Biol Soc. 1995; doi: 10.1109/ RCEMBS.1995.533005.Google Scholar
  88. [88]
    Agnew WF, McCreery DB. Neural prostheses: fundamental studies. Englewood Cliffs: Prentice Hall; 1990.Google Scholar
  89. [89]
    Schmidt S, Horch K, Normann R. Biocompatibility of siliconbased electrode arrays implanted in feline cortical tissue. J Biomed Mater Res. 1993; 27(11): 1393–9.CrossRefGoogle Scholar
  90. [90]
    Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials. 2003; 24(11): 1959–67.CrossRefGoogle Scholar
  91. [91]
    Brazier MA. Recordings from large electrodes. Methods Med Res. 1961; 9: 405–32.Google Scholar
  92. [92]
    Seymour JP, Kipke DR. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials. 2007; 28(25): 3594–607.CrossRefGoogle Scholar
  93. [93]
    Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran JM, Melzak J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials. 2002; 23(13): 2737–50.CrossRefGoogle Scholar
  94. [94]
    Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophth Vis Sci. 2009; 50(12): 5859–66.CrossRefGoogle Scholar
  95. [95]
    Matthews R, McDonald NJ, Anumula H, Woodward J, Turner PJ, Steindorf MA, Chang K, Pendleton JM. Novel hybrid bioelectrodes for ambulatory zero-prep EEG measurements using multi-channel wireless EEG system, Lect Notes Artif Int. 2007; doi: 10.1007/978-3-540-73216-7_16.Google Scholar
  96. [96]
    Lee SB, Lee B, Kiani M, Mahmoudi B, Gross R, Ghovanloo M. An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sens J. 2016; 16(2): 475–84.CrossRefGoogle Scholar
  97. [97]
    Rhew H-G, Jeong J, Fredenburg JA, Dodani S, Patil PG, Flynn MP. A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid-St Circ. 2014; 49(10): 2213–27.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer 2016

Authors and Affiliations

  1. 1.BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace EngineersSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of electrical and computer engineering, and Institute of EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea

Personalised recommendations