Biomedical Engineering Letters

, Volume 3, Issue 4, pp 201–208 | Cite as

Graphene bioelectronics

  • Jonghyun Choi
  • Michael Cai Wang
  • Ronald Young S. Cha
  • Won Il Park
  • SungWoo Nam
Review Article


Graphene, a single-atomic-thick planar sheet of sp2-bonded carbon atoms, has been widely investigated for its potential applications in many areas, including biological interfaces, due to its superb electromechanical, optical and chemical properties. In particular, its mechanical flexibility and biocompatibility allow graphene to be configured and utilized as ultra-compliant interfaces for implantable bioelectronics. Furthermore, the superior carrier mobility and transconductance level of graphene field-effect devices lend themselves as high performance/high sensitivity field-effect signal transducers, whose source-drain current is modulated by external field or charge perturbation from chemical and/or biological events. In this article, we review recent developments in graphenebased bioelectronics, focusing on both materials synthesis/fabrication as well as cellular interfaces, and discuss challenges and opportunities for ultra-compliant, highly sensitive, three-dimensional (3D) bioelectronic interfaces in the future.


Graphene Cell Flexibility Implantable Field-Effect Transistor Bioelectronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Geim AK. Graphene: status and prospects. Science. 2009; 324(5934):1530–1534.CrossRefGoogle Scholar
  2. [2]
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007; 6(3):183–191.CrossRefGoogle Scholar
  3. [3]
    Ang PK, Chen W, Wee ATS, Loh KP. Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc. 2008; 130(44):14392–14393.CrossRefGoogle Scholar
  4. [4]
    Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010; 10(3):1098–1102.CrossRefGoogle Scholar
  5. [5]
    Dong X, Shi Y, Huang W, Chen P, Li L-J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater. 2010; 22(14):1649–1653.CrossRefGoogle Scholar
  6. [6]
    Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008; 8(12):4469–4476.CrossRefGoogle Scholar
  7. [7]
    Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K. Electrolytegated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 2009; 9(9):3318–3322.CrossRefGoogle Scholar
  8. [8]
    Park J-U, Nam S, Lee M-S, Lieber CM. Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater. 2012; 11(2):120–125.CrossRefGoogle Scholar
  9. [9]
    Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008; 321(5887):385–388.CrossRefGoogle Scholar
  10. [10]
    Edwards RS, Coleman KS. Graphene film growth on polycrystalline metals. Accounts Chem Res. 2013; 46(1):23–30.CrossRefGoogle Scholar
  11. [11]
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science. 2009; 324(5932):1312–1314.CrossRefGoogle Scholar
  12. [12]
    Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010; 5(8):574–578.CrossRefGoogle Scholar
  13. [13]
    Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y-W, Kim P, Hone J, Colombo L, Ruoff RS. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science. 2013; 342(6159):720–723.CrossRefGoogle Scholar
  14. [14]
    Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009; 9(12):4268–4272.CrossRefGoogle Scholar
  15. [15]
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010; 10(3):751–758.CrossRefGoogle Scholar
  16. [16]
    Nam S, Chun S, Choi J. All-carbon graphene bioelectronics. Conf IEEE Eng Med Biol Soc. 2013; 5654–5657.Google Scholar
  17. [17]
    Ang PK, Jaiswal M, Lim CHYX, Wang Y, Sankaran J, Li A, Lim CT, Wohland T, Barbaros O, Loh KP. A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano. 2010; 4(12):7387–7394.CrossRefGoogle Scholar
  18. [18]
    Sankaran J, Manna M, Guo L, Kraut R, Wohland T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys J. 2009; 97(9):2630–2639.CrossRefGoogle Scholar
  19. [19]
    Kannan B, Guo L, Sudhaharan T, Ahmed S, Maruyama I, Wohland T. Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem. 2007; 79(12):4463–4470.CrossRefGoogle Scholar
  20. [20]
    Huang Y, Dong X, Liu Y, Li L-J, Chen P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem. 2011; 21(33):12358–12362.CrossRefGoogle Scholar
  21. [21]
    Ang PK, Li A, Jaiswal M, Wang Y, Hou HW, Thong JTL, Lim CT, Loh KP. Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett. 2011; 11(12):5240–5246.CrossRefGoogle Scholar
  22. [22]
    Aikawa M, Kamanura K, Shiraishi S, Matsumoto Y, Arwati H, Torii M, Ito Y, Takeuchi T, Tandler B. Membrane knobs of unfixed plasmodium falciparum infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy. Exp Parasitol. 1996; 84(3):339–343.CrossRefGoogle Scholar
  23. [23]
    Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F, Castillo-León J. Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst. 2013; 138(4):1026–1031.CrossRefGoogle Scholar
  24. [24]
    Daly R, Kumar S, Lukacs G, Lee K, Weidlich A, Hegner M, Duesberg GS. Cell proliferation tracking using graphene sensor arrays. J Sens. 2012; doi:10.1155/2012/219485.Google Scholar
  25. [25]
    Wu YH, Yu T, Shen ZX. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J Appl Phys. 2010; 108(7):071301.CrossRefGoogle Scholar
  26. [26]
    Romero HE, Shen N, Joshi P, Gutierrez HR, Tadigadapa SA, Sofo JO, Eklund PC. n-Type behavior of graphene supported on Si/SiO(2) substrates. ACS Nano. 2008; 2(10):2037–2044.CrossRefGoogle Scholar
  27. [27]
    He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano. 2010; 4(6):3201–3208.CrossRefGoogle Scholar
  28. [28]
    Nguyen P, Berry V. Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett. 2012; 3(8):1024–1029.CrossRefGoogle Scholar
  29. [29]
    Sudibya HG, Ma J, Dong X, Ng S, Li L-J, Liu X-W, Chen P. Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew Chem Int Edit. 2009; 48(15):2723–2726.CrossRefGoogle Scholar
  30. [30]
    Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhäusser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater. 2011; 23(43):5045–5049.CrossRefGoogle Scholar
  31. [31]
    An JH, Park SJ, Kwon OS, Bae J, Jang J. High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano. 2013; 7(12):10563–10571.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer 2013

Authors and Affiliations

  • Jonghyun Choi
    • 1
  • Michael Cai Wang
    • 1
  • Ronald Young S. Cha
    • 2
  • Won Il Park
    • 3
  • SungWoo Nam
    • 1
    • 4
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignSt., UrbanaUSA
  2. 2.Samsung Research AmericaRichardsonUSA
  3. 3.Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  4. 4.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignSt., UrbanaUSA

Personalised recommendations