Advertisement

Biomedical Engineering Letters

, Volume 2, Issue 1, pp 38–45 | Cite as

Directing cell function and fate via micropatterning: Role of cell patterning size, shape, and interconnectivity

  • Ishwari Poudel
  • Daniel E. Menter
  • Jung Yul Lim
Review Article

Abstract

Micropatterning-based geometric cell confinement provides novel templates for investigating cellular function and fate. Cell size, shape, and degree of connectivity among cells can be systematically manipulated using micropatterning, allowing for the studies of the effects of patterned cell geometries on cell behavior. Cells conformed to micropatterns develop unique intracellular architectures and signaling activities, regulating cell proliferation, migration, survival/apoptosis, commitment, and differentiation. Cell patterning size controls cell survival and apoptosis and stem cell fate via cytoskeletal tension signaling such as RhoA-ROCK. Cell patterning shape affects cell growth and migration via altered cellular polarity and Rac1 signaling. Modulation of cell-cell interconnectivity via micropatterning affects proliferation and differentiation via regulating the expression of cell-cell interaction molecules such as cadherin. Systematic assessment of cell function and fate using micropatterned cells will shed new insights for understanding the mechanisms in cell and molecular biology studies and for the control of cell behavior in biomedical applications.

Keywords

Micropatterning Geometric confinement Cell size Shape Interconnectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wang N, Ingber DE. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. J Bioph. 1994; 66(6):2181–2189.CrossRefGoogle Scholar
  2. [2]
    Corey JM, Feldman EL. Substrate patterning: An emerging technology for the study of neuronal behavior. Exp Neurol. 2003; 184Suppl 1:S89–S96.CrossRefGoogle Scholar
  3. [3]
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997; 276(5317):1425–1428.CrossRefGoogle Scholar
  4. [4]
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotech Prog. 1998; 14(3):356–363.CrossRefGoogle Scholar
  5. [5]
    Yang IH, Co CC, Ho CC. Alteration of human neuroblastoma cell morphology and neurite extension with micropatterns. Biomaterials. 2005; 26(33):6599–609.CrossRefGoogle Scholar
  6. [6]
    Frimat JP, Sisnaiske J, Subbiah S, Menne H, Godoy P, Lampen P, Leist M, Franzke J, Hengstler JG, van Thriel C, West J. The network formation assay: A spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip. 2010; 10(6):701–709.CrossRefGoogle Scholar
  7. [7]
    Jiang X, Ferrigno R, Mrksich M, Whitesides GM. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J Am Chem Soc. 2003; 125(9):2366–2367.CrossRefGoogle Scholar
  8. [8]
    Kushiro K, Chang S, Asthagiri AR. Reprogramming directional cell motility by tuning micropattern features and cellular signals. Advan Mater. 2010; 22(40):4516–4519.CrossRefGoogle Scholar
  9. [9]
    Rosenthal A, Macdonald A, Voldman J. Cell patterning chip for controlling the stem cell microenvironment. Biomaterials. 2007; 28(21):3208–3216.CrossRefGoogle Scholar
  10. [10]
    Thery M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci. 2010; 123(24):4201–13.CrossRefGoogle Scholar
  11. [11]
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004; 6(4):483–495.CrossRefGoogle Scholar
  12. [12]
    Lim JY, Donahue HJ. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007; 13(8):1879–1891.CrossRefGoogle Scholar
  13. [13]
    Ostuni E, Whitesides GM, Ingber DE, Chen CS. Using selfassembled monolayers to pattern ECM proteins and cells on substrates. Method Mol Biol. 2009; 522:183–194.CrossRefGoogle Scholar
  14. [14]
    Lussi JW, Michel R, Reviakine I, Falconnet D, Goessl A, Csucs G, Hubbell JA, Textor M. A novel generic platform for chemical patterning of surfaces. Prog Surf Sci. 2004; 76:55–69.CrossRefGoogle Scholar
  15. [15]
    Falconnet D, Koenig A, Assi T, Textor M. A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv Funct Mater. 2004; 14:749–756.CrossRefGoogle Scholar
  16. [16]
    Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, Langer R. A reversibly switching surface. Science. 2003; 299(5605):371–374.CrossRefGoogle Scholar
  17. [17]
    Kidambi S, Lee I, Chan C. Patterned co-culture of neurons and astrocytes on polyelectrolyte multilayer films for studying astrocyte mediated oxidative stress in neurons. Adv Funct Mater. 2008; 18:294–301.CrossRefGoogle Scholar
  18. [18]
    Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M. Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res. 2000; 52(2):346–353.CrossRefGoogle Scholar
  19. [19]
    Rettig JR, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem. 2005; 77(17):5628–34.CrossRefGoogle Scholar
  20. [20]
    Shi J, Ahmed D, Mao X, Lin SC, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip. 2009; 9(20):2890–2895.CrossRefGoogle Scholar
  21. [21]
    Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN. Probing the role of multicellular organization in threedimensional microenvironments. Nat Methods. 2006; 3(5):369–375.CrossRefGoogle Scholar
  22. [22]
    Gray DS, Liu WF, Shen CJ, Bhadriraju K, Nelson CM, Chen CS. Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp Cell Res. 2008; 314(15):2846–2854.CrossRefGoogle Scholar
  23. [23]
    Buyukhatipoglu K, Chang R, Sun W, Clyne AM. Bioprinted nanoparticles for tissue engineering applications. Tissue Eng Part C Meth. 2010; 16(4):631–642.CrossRefGoogle Scholar
  24. [24]
    Buzanska L, Zychowicz M, Ruiz A, Ceriotti L, Coecke S, Rauscher H, Sobanski T, Whelan M, Domanska-Janik K, Colpo P, Rossi F. Neural stem cells from human cord blood on bioengineered surfaces-novel approach to multiparameter biotests. Toxicol. 2010; 270(1):35–42.CrossRefGoogle Scholar
  25. [25]
    El-Amraoui A, Petit C. Cadherins as targets for genetic diseases. Cold Spring Harb Perspect Biol. 2010; 2(1):a003095.CrossRefGoogle Scholar
  26. [26]
    Chen CS, Alonso JL, Ostuni E, Whitesides GM, Ingber DE. Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun. 2003; 307(2):355–361.CrossRefGoogle Scholar
  27. [27]
    Watt FM, Jordan PW, O’Neill CH. Cell shape controls terminal differentiation of human epidermal keratinocytes. P Natl Acad Sci USA. 1988; 85(15):5576–5580.CrossRefGoogle Scholar
  28. [28]
    Ingber D. Extracellular matrix and cell shape: Potential control points for inhibition of angiogenesis. J Cell Biochem. 1991; 47(3):236–41.CrossRefGoogle Scholar
  29. [29]
    Lim JY, Taylor AF, Li Z, Vogler EA, Donahue HJ. Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics. Tissue Eng. 2005; 11(1–2):19–29.CrossRefGoogle Scholar
  30. [30]
    Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials. 2008; 29(12):1776–1784.CrossRefGoogle Scholar
  31. [31]
    Song W, Lu H, Kawazoe N, Chen G. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir. 2011; 27(10):6155–162.CrossRefGoogle Scholar
  32. [32]
    Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and Ncadherin. Stem Cells. 2010; 28(3):564–572.Google Scholar
  33. [33]
    Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. P Natl Acad Sci USA. 2002; 99(4):1972–1977.CrossRefGoogle Scholar
  34. [34]
    Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM. Directing cell migration with asymmetric micropatterns. P Natl Acad Sci USA. 2005; 102(4):975–978.CrossRefGoogle Scholar
  35. [35]
    Kumar G, Ho CC, Co CC. Guiding cell migration using one-way micropattern arrays. Adv Mater. 2007; 19:1084–90.CrossRefGoogle Scholar
  36. [36]
    Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS. Emergent patterns of growth controlled by multicellular form and mechanics. P Natl Acad Sci USA. 2005; 102(33):11594–11599.CrossRefGoogle Scholar
  37. [37]
    Nishimura T, Takeichi M. Remodeling of the adherens junctions during morphogenesis. Curr Top Dev Biol. 2009; 89:33–54.CrossRefGoogle Scholar
  38. [38]
    Stains JP, Civitelli R. Cell-to-cell interactions in bone. Biochem Bioph Res Co. 2005; 328(3):721–727.CrossRefGoogle Scholar
  39. [39]
    Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S, Srinivasan S, Gross TS, Donahue HJ. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One. 2011; 6(8):e23516.CrossRefGoogle Scholar
  40. [40]
    Bloemen V, Schoenmaker T, de Vries TJ, Everts V. Direct cellcell contact between periodontal ligament fibroblasts and osteoclast precursors synergistically increases the expression of genes related to osteoclastogenesis. J Cell Physiol. 2010; 222(3):565–573.Google Scholar
  41. [41]
    Charest JL, Jennings JM, King WP, Kowalczyk AP, Garcia AJ. Cadherin-mediated cell-cell contact regulates keratinocyte differentiation. J Invest Dermatol. 2009; 129(3):564–572.CrossRefGoogle Scholar
  42. [42]
    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001; 294(5547):1708–12.CrossRefGoogle Scholar
  43. [43]
    Xu Y, Yao H, Wang L, Xing W, Cheng J. The construction of an individually addressable cell array for selective patterning and electroporation. Lab Chip. 2011; 11(14):2417–2423.CrossRefGoogle Scholar
  44. [44]
    Fedorovich NE, Alblas J, Hennink WE, Oner FC, Dhert WJ. Organ printing: the future of bone regeneration? Trends Biotechnol. 2011; 29(12):601–606.CrossRefGoogle Scholar
  45. [45]
    Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S, Haverich A, Chichkov B. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Method. 2011; 17(10):973–982.CrossRefGoogle Scholar
  46. [46]
    Hanson Shepherd JN, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG. 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Adv Funct Mater. 2011; 21(1):47–54.CrossRefGoogle Scholar
  47. [47]
    Park JY, Takayama S, Lee SH. Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems. Integr Biol (Camb). 2010; 2(5–6):229–240.CrossRefGoogle Scholar
  48. [48]
    Kim S, Kim HJ, Jeon NL. Biological applications of microfluidic gradient devices. Integr Biol (Camb). 2010; 2(11–12):584–603.MathSciNetCrossRefGoogle Scholar
  49. [49]
    Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment. Integr Biol (Camb). 2011; 3(10):959–971.CrossRefGoogle Scholar
  50. [50]
    Tavana H, Jovic A, Mosadegh B, Lee QY, Liu X, Luker KE, Luker GD, Weiss SJ, Takayama S. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat Mater. 2009; 8(9):736–741.CrossRefGoogle Scholar

Copyright information

© © Korean Society of Medical and Biological Engineering and Springer 2012

Authors and Affiliations

  • Ishwari Poudel
    • 1
  • Daniel E. Menter
    • 1
  • Jung Yul Lim
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations