Toxicology and Environmental Health Sciences

, Volume 11, Issue 4, pp 305–311 | Cite as

Neuronal Apoptosis and Imbalance of Neurotransmitters Induced by Acetamiprid in Rats

  • Salim GasmiEmail author
  • Smail Chafaa
  • Zhora Lakroun
  • Rachid Rouabhi
  • Chouaib Touahria
  • Mohamed KebiecheEmail author
  • Rachid Soulimani
Original article


Recent toxicological studies have demonstrated that exposure to organochlorine pesticides is susceptible to produce various alterations in brain cell which significantly contribute to a loss in neurobehavioral skills and disturbance of neuronal function. Acetamipride (AC) is belonging to this organochlorines family and it is considered less harmful by toxicovigilance systems and practices in Algeria. The aim of this work was mainly to evaluate the impact of this pesticide on the brain cell integrity and function in Acetamiprid-treated rats at the dose of 3.14 mg/kg (1/60 Lethal Dose) daily during 3 months. Several indicators of neuronal apoptosis and function have been rated, in addition to classical labyrinth and Maze tests monitoring to evaluate learning and memorization abilities in rats exposed to this neonicotinoid. The results of this study have shown significant enhancing of cytochrome-c(p<0.01) and Caspase-3(p<0.001) activities in brain lysates of treated group that is correlated with induction of apoptosis. At the same time, assessment of neurotrans-mitters brain cells has recorded a significant increase (p<0.01) in adrenaline rate and a significant decrease in cerebral level of dopamine (p< 0.01), serotonin (p<0.001) and Acetylcholin esterase in the same group comparing to control. Furthermore, neurobehavioral study has shown a strong correlation between the unbalance observed in neurotransmitters homeostasis and the significant (p<0.01) loss of learning, memorization and locomotive potential as demonstrated by the increase in arrival time(S) (10.33±3.14) versus (3.33±2.05) in control. In conclusion, exposition of the rats to Acetamiprid generates apoptosis which is induced by releasing of mitochondrial Cytochrome-c in cell cytosol and alters neurotransmitters rates that could reduce the potential of learning and memorization in the rats.


Acetamiprid Apoptosis Neurotransmitters Neurobehavior Learning Memorization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



First, our thanks are addressed to DGRSDT of Algeria for its support. All the labs to which the co-authors are affiliated are also thanked for authorizing our team to achieve this work.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of Rats were followed.


  1. 1.
    Hatcher, J. M., Pennell, K. D. & Miller, G. W. Parkinson's disease and pesticides: a toxicological perspective. Trends Pharmacol. Sci. 29, 322–329(2008).CrossRefGoogle Scholar
  2. 2.
    Lahouel, A. et al. Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat. Environ. Sci. Pollut. Res. 23, 19030–19040(2016).CrossRefGoogle Scholar
  3. 3.
    Syam, S. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environ. Int. 100, 32–61(2017).CrossRefGoogle Scholar
  4. 4.
    Wilson, W. Developmental Exposure to the Organochlo-rine Insecticide Endosulfan Alters Expression of Proteins Associated with Neurotransmission in the Frontal Cortex, SYNAPSE. 68, 485–497(2014).CrossRefGoogle Scholar
  5. 5.
    Alan, G. & Porter, A. R. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–104(1999).CrossRefGoogle Scholar
  6. 6.
    Mrema, E. J., Rubino, F. M., Brambilla, G., Moretto, M. & Tsatsakis, A. M. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicol. 307, 74–88(2012).CrossRefGoogle Scholar
  7. 7.
    European Food Safety Authority (EFSA). Scientific Opinion on the developmental neurotoxicity potential of. EFSA Journal11, 1–51(2013).Google Scholar
  8. 8.
    Tian, Y. Y. W. A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length. Analy. Biochem. 23, 45–57(2016).Google Scholar
  9. 9.
    Fernandez, V. C, Sancho, E., Ferando, M. D. & Andreu, M. E. Thiobencarb induced changes in acetylcholinesterase activity of the fish Anguilla Anguilla. Pestic. Biochem. and Physiol. 72, 55–63(2002).CrossRefGoogle Scholar
  10. 10.
    Chakroun, S. et al. Hematological, biochemical, and toxicopathic effects of subchronicacetamiprid toxicity in Wistar rats. Environ. Sci. Pollut. Res. 23, 25191–25199(2016).CrossRefGoogle Scholar
  11. 11.
    Lakroun, Z., Kebieche, M., Lahouel, A., Zama, D. & Soulimani, R. Oxidative stress and brain mitochondria swelling induced by Endosulfan and protective role of quercetin in rat. Environ. Sci. Pollut. Res. 22, 7776–7781(2015).CrossRefGoogle Scholar
  12. 12.
    Shi, Y. et al. Benzene hexachloride induces apoptosis of rat Sertoli cells through generation of reactive oxygen species and activation of JNKs and FasL. Environ. Toxicol. 26, 124–135(2011).CrossRefGoogle Scholar
  13. 13.
    Shi, Y. Q. et al. Induces testicular apoptosis in prepubertal rats via the Fas/FasL pathway. Toxicol. Lett. 193, 79–85(2010).CrossRefGoogle Scholar
  14. 14.
    Di-Monte, D. A. & Lavasani, M. Manning-Bog AB. Environmental factors in Parkinson's disease. Neuro-toxicology23, 487–502(2002).Google Scholar
  15. 15.
    Sara, H. et al. Oxidative stress status, caspase-3, stromal enzymes and mitochondrial respiration and swelling of Paramecium caudatum in responding to the toxicity of Fe3O4 nanoparticles. Toxicol. Environ. Health Sci. 8, 161–169(2016). Doi: 10.1007/sl3530-016-0273-l.CrossRefGoogle Scholar
  16. 16.
    Hussein, S. A., Abdel-Aal, S. A. & Khalaf, H. A. Che-mopreventive Role of Curcumin in benzo (A) pyrene induced Lung Carcinogenesis in mice via-modulation of Chemopreventive Role of Curcumin in benzo (A) pyrene induced Lung Carcinogenesis in mice COX-2 and antioxidant defense system in Lung tissue. Int. J. Pharma. Sci. 6, 1616–1622(2016).Google Scholar
  17. 17.
    Sherer, B. T. An in Vitro Model of Parkinson's disease: Linking Mtochondrial Impairment to Altered Synucle-in Metabolism and Oxidative Damage. J. of Neurosci. 22,7006–7015(2002).CrossRefGoogle Scholar
  18. 18.
    Gasmi, S. et al. Effects of Deltamethr in on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. Environ. Sci. Pollut. Res. 24, 16440–16457(2017).CrossRefGoogle Scholar
  19. 19.
    Gao, C. et al. Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: regulatory effects of quercetin. Eur. J. Appl. Physiol. 114, 695–705(2014).CrossRefGoogle Scholar
  20. 20.
    Banerjee. B. D., Seth. V. & Rs. A. Pesticide-induced oxidative stress: perspectives and trends. Environ. Health16, 1–40(2001).Google Scholar
  21. 21.
    Chahinez, T. et al. Toxicity of Fe3O4 nanoparticles on oxidative stress status, stromal enzymes and mitochondrial respiration and swelling of Oryctolaguscuniculus brain cortex. Toxicol. Environ. Health Sci. 8, 349–355(2016).CrossRefGoogle Scholar
  22. 22.
    Testud, F. Insecticides neonicotinoides. EMC-Patholo-gie professionnelle et de l'environnement. EMC Toxicol. Pathol. 9, 1–6(2014).Google Scholar
  23. 23.
    Pettmann, B. & Henderson, C. E. Neuronal cell death. Neuron. 20, 633–647(1998).CrossRefGoogle Scholar
  24. 24.
    Myburgh, J. A. et al. Comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 34, 2226–2234(2008).CrossRefGoogle Scholar
  25. 25.
    Reneman, L. Memory disturbances in “Ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacol. 148, 322–324(2002).CrossRefGoogle Scholar
  26. 26.
    Ikonomidou, C. et al. Neurotransmitters and apoptosis in the developing brain. Biochem. Pharmacol. 62, 401–405(2001).CrossRefGoogle Scholar
  27. 27.
    Zhang, H. Mesoionicpyridopyrimidinones: Discovery of dicloromezotiaz as a lepidoptera insecticide acting on nicotinic acetylcholine receptors. Bioorg. Med. Chem. Lett. 15, 911–917(2017).CrossRefGoogle Scholar
  28. 28.
    Karami-Mohajeri, S. and Abdollahi, M. Toxic influence of organophosphate, carbamate, and organochlo-rine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: A systematic review. Hum. Exp. Toxicol. 30, 1119–1140(2011).CrossRefGoogle Scholar
  29. 29.
    Bernhoorn, I. E. J. & Van, V. J. H. J. The use of different enzymes in feral freshxater as a tool for the assessment of water pollution in Africa. Ecotoxical. Environ. Saf. 59, 180–185(2004).CrossRefGoogle Scholar
  30. 30.
    Gao, H. et al. The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury. Brain Research15, 1–8(2017).Google Scholar
  31. 31.
    Zoumenou, B. M. Effets toxicologiques et methodes d'analyse de la lambda-cyhalothrine et de l'acetamipri-deutilisesdans la protection phytosanitaire du cotonnier. Int. J. Biol. Chem. Sci. 9, 2184–2199(2015).CrossRefGoogle Scholar
  32. 32.
    Gasmi, S. et al. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid. Environ. Sci. Pollut. Res. 24, 22258–22264(2017).CrossRefGoogle Scholar
  33. 33.
    Clayton D. A. and J. N. Doda. Isolation of mitochondria from cells and tissues: A laboratory manual, D. L. Spec-tor, R. Goldman and L. Lei wand, Ed. Sci. Press, Beijing, Chaina, 356–361(2001).Google Scholar
  34. 34.
    Ellman, G. L., Courtney, K. D., Andres, V. & Feather-stone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95(1961).CrossRefGoogle Scholar
  35. 35.
    Jaako, K. T. Developmental lead exposure impairs contextual fear conditioning and reduces adult hippo-campal neurogenesis in the rat brain. Int. J. Develop. Neurosci. 23, 627–635(2005).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2019

Authors and Affiliations

  • Salim Gasmi
    • 1
    Email author
  • Smail Chafaa
    • 2
  • Zhora Lakroun
    • 3
  • Rachid Rouabhi
    • 1
  • Chouaib Touahria
    • 4
  • Mohamed Kebieche
    • 2
    Email author
  • Rachid Soulimani
    • 5
  1. 1.Laboratory of ToxicologyUniversity of TebessaTebessaAlgeria
  2. 2.Faculty of Natural and Life SciencesUniversity of Batna2Fesdis, BatnaAlgeria
  3. 3.Laboratory of Molecular and Cell BiologyUniversity of JijelJijelAlgeria
  4. 4.Departement of BiologyUniversity of AnnabaAnnabaAlgeria
  5. 5.Université de Lorraine, Unité UR AFPA, EA3998, INRA USC 0340, MRCA, NAB, BP 4102, 57040 MetzUniversity de LorraineMetzFrance

Personalised recommendations