Endosulfan Induces Embryotoxicity in the Marine Medaka Oryzias javanicus

  • Manoharan Saravanan
  • Sang-Eun Nam
  • Jae-Sung RheeEmail author



The present study aimed to investigate the embryotoxicity of endosulfan (ES) on marine medaka Oryzias javanicus embryos using several toxicity endpoints such as measurements of oxidative stress, DNA damage, cell death, and AChE enzyme activity upon different concentrations of waterborne ES.


Fertilized marine medaka embryos (3 hpf) were exposed to three concentrations of ES (86.2, 172.4, and 862 µg L−1). Oxidative stress parameters [e.g. intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH)], nitric oxide (NO) production, DNA damage, cell death, and acetylcholinesterase (AChE) activity were analyzed.


The highest concentration 862 µg L−1 of ES significantly increased the intracellular ROS, MDA, GSH, and NO in the embryos compared to control groups. Endosulfan increased DNA damage and cell death in the marine medaka embryos during post fertilization period. In the case of AChE, a significant inhibition was detected in the 862 µg L−1 ES-treated medaka embryo. In addition, intracellular GSH level was increased by 172.2 µg L−1 ES exposure in medaka embryos.


Our results suggest that ES may induce strong cell death through increase of oxidative stress and DNA damage. Inhibition of AChE would represent potential neurotoxicity on cholinergic system of marine medaka embryos. The parameters tested in this study would be a useful biomarker for risk assessment of ES as an early signal of its toxicity.


Endosulfan Marine medaka Embryo toxicity Oxidative stress DNA damage Cell death 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Publication of this article was co-sponsored by the ToxEHS.


  1. 1.
    Weber, J. et al. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 408, 2966–2984 (2010).CrossRefGoogle Scholar
  2. 2.
    Jergentz, S., Mugni, H., Bonetto, C. & Schulz, R. Run-off-related endosulfan contamination and aquatic macro-invertebrate response in rural basins near Buenos Aires, Argentina. Arch. Environ. Contam. Toxicol. 46, 345–352 (2004).CrossRefGoogle Scholar
  3. 3.
    Kumar, M. & Philip, L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere 62, 1064–1077 (2006).CrossRefGoogle Scholar
  4. 4.
    Belanger, S. E., Rawlings, J. M. & Carr, G. J. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ. Toxicol. Chem. 32, 1768–1783 (2013).CrossRefGoogle Scholar
  5. 5.
    Klüver, N. et al. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds. Environ. Sci. Technol. 49, 7002–7011 (2015).CrossRefGoogle Scholar
  6. 6.
    Dale, K., Rasinger, J. D., Thorstensen, K. L., Penglase, S. & Ellingsen, S. Vitamin E reduces endosulfan-induced toxic effects on morphology and behavior in early development of zebrafish (Danio rerio). Food Chem. Toxicol. 101, 84–93 (2017).CrossRefGoogle Scholar
  7. 7.
    Gormley, K. L. & Teather, K. L. Developmental, behavioral, and reproductive effects experienced by Japanese medaka (Oryzias latipes) in response to short-term exposure to endosulfan. Ecotoxicol. Environ. Safe. 54, 330–338 (2003).CrossRefGoogle Scholar
  8. 8.
    Willey, J. B. & Krone, P. H. Effects of endosulfan and nonylphenol on the primordial germ cell population in pre-larval zebrafish embryos. Aquat. Toxicol. 54, 113–123 (2001).CrossRefGoogle Scholar
  9. 9.
    Stanley, K. A., Curtis, L. R., Simonich, S. L. M. & Tanguay, R. L. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquat. Toxicol. 95, 355–361 (2009).CrossRefGoogle Scholar
  10. 10.
    Chow, W. S., Chan, W. K. & Chan, K. M. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A. J. Appl. Toxicol. 33, 670–678 (2013).CrossRefGoogle Scholar
  11. 11.
    Inoue, K. & Takei, Y. Diverse adaptability in Oryzias species to high environmental salinity. Zool. Sci. 19, 727–734 (2002).CrossRefGoogle Scholar
  12. 12.
    Kim, B.-M. et al. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research. Mar. Environ. Res. 113, 141–152 (2016).CrossRefGoogle Scholar
  13. 13.
    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68, 253–278 (2006).CrossRefGoogle Scholar
  14. 14.
    Shao, B. et al. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21, 1533–1540 (2012).CrossRefGoogle Scholar
  15. 15.
    Niki, E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors 34, 171–180 (2008).CrossRefGoogle Scholar
  16. 16.
    Yang, Y. et al. Biological response of zebrafish embryos after short-term exposure to thifluzamide. Sci. Rep. 6, 38485 (2016).CrossRefGoogle Scholar
  17. 17.
    Forman, H. J., Zhang, H. & Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30, 1–12 (2009).CrossRefGoogle Scholar
  18. 18.
    Timme-Laragy, A. R. et al. Glutathione redox dynamics and expression of glutathione related genes in the developing embryo. Free Radic. Biol. Med. 65, 89–101 (2013).CrossRefGoogle Scholar
  19. 19.
    Nathan, C. & Xie, Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915–918 (1994).CrossRefGoogle Scholar
  20. 20.
    Dumitrescu, E., Wallace, K. N. & Andreescu, S. Real time electrochemical investigation of the release, distribution and modulation of nitric oxide in the intestine of individual zebrafish embryos. Nitric Oxide 74, 32–38 (2018).CrossRefGoogle Scholar
  21. 21.
    Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).CrossRefGoogle Scholar
  22. 22.
    Kilemade, M. F. et al. Genotoxicity of field-collected inter-tidal sediments from Cork Harbor, Ireland, to juvenile turbot (Scophthalmus maximus L.) as measured by the Comet assay. Environ. Mol. Mutagen. 44, 56–64 (2004).CrossRefGoogle Scholar
  23. 23.
    Sebastian, R. & Raghavan, S. C. Induction of DNA damage and erroneous repair can explain genomic instability caused by endosulfan. Carcinogenesis 37, 929–940 (2016).CrossRefGoogle Scholar
  24. 24.
    Livingstone, D. R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656–666 (2001).CrossRefGoogle Scholar
  25. 25.
    Soreq, H. & Seidman, S. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302 (2001).CrossRefGoogle Scholar
  26. 26.
    Behra, M. et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat. Neurosci. 5, 111–118 (2002).CrossRefGoogle Scholar
  27. 27.
    Lin, C. C., Hui, M. N. Y. & Cheng, S. H. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol. Appl. Pharmacol. 222, 159–168 (2007).CrossRefGoogle Scholar
  28. 28.
    Dutta, H. M. & Arends, D. A. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environ. Res. 91, 157–162 (2003).CrossRefGoogle Scholar
  29. 29.
    Xing, H. et al. Effects of atrazine and chlorpyrifos on acetylcholinesterase and carboxylesterase in brain and muscle of common carp. Environ. Toxicol. Pharmacol. 30, 26–30 (2010).CrossRefGoogle Scholar
  30. 30.
    OECD. OECD Guidelines for Testing of Chemicals, Section 2. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Publishing (2013).Google Scholar
  31. 31.
    Rhee, J.-S., Kim, B.-M., Kang, C.-M., Lee, Y.-M. & Lee, J.-S. Gamma irradiation-induced oxidative stress and developmental impairment in the hermaphroditic fish, Kryptolebias marmoratus embryo. Environ. Toxicol. Chem. 31, 1745–1753 (2012).CrossRefGoogle Scholar
  32. 32.
    Lee, D.-H., Jo, Y. J., Eom, H.-J., Yum, S. & Rhee, J.-S. Nonylphenol induces mortality and reduces hatching rate through increase of cell damage and dysfunction of antioxidant defense system in marine medaka embryo. Mol. Cell. Toxicol. 14, 439–446 (2018).Google Scholar
  33. 33.
    Rhee, J.-S. et al. Whole spectrum of cytochrome P450 genes and molecular responses to water-accommodated fractions exposure in the marine medaka. Environ. Sci. Technol. 47, 4804–4812 (2013).CrossRefGoogle Scholar
  34. 34.
    Kim, B.-M. et al. Effects of benzo[a]pyrene on whole cytochrome P450-involved molecular responses in the marine medaka Oryzias melastigma. Aquat. Toxicol. 152, 232–243 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2019

Authors and Affiliations

  • Manoharan Saravanan
    • 1
    • 2
  • Sang-Eun Nam
    • 1
  • Jae-Sung Rhee
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Marine Science, College of Natural SciencesIncheon National UniversityIncheonRepublic of Korea
  2. 2.Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
  3. 3.Institute of Green Environmental Research CenterIncheonRepublic of Korea

Personalised recommendations