Advertisement

Effects of Silicon in the Amelioration of Zn Toxicity on Antioxidant Enzyme Activities

  • Abolghassem Emamverdian
  • Yulong Ding
  • Yinfeng Xie
Article
  • 35 Downloads

Abstract

Objective

Silicon, an abundant element in the earth’s crust, is a known factor in reducing the toxicity of plants. The effects of silicon were investigated to the amelioration of Zinc (Zn) toxicity on antioxidant enzyme activities (Superoxide dismutase (SOD), Catalase (CAT), and Glutathione Reductase (GR)), Hydrogen peroxide concentrations (H2O2), phenylalanine ammonia-lyase (PAL), and soluble protein (SP) in one bamboo species (Arundinaria pygmaea).

Methods

This study was conducted in vitro condition to determine the effects of four Zn concentrations (100, 300, 500, and 1000 µmol/L) at two different concentrations of silicon (Si) (0 and 100 µmol/L) on a single bamboo species (Arundinaria pygmaea).

Results

The results indicated that Si can stimulate the plant defense mechanism and ameliorate heavy metal stress caused by Zn concentrations, which can increase antioxidant enzyme and non-enzyme activity and decrease damaging effects caused by free radicals, H2O2, and soluble protein in this bamboo species.

Conclusion

Furthermore, the results indicated that the combination of 100/300 µmol/L had a considerable impact on the reduction of Zn toxicity.

Keywords

Abiotic stress Heavy metals Silicon Zinc Arundinaria pygmaea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartley, S. E. & DeGabri, J. L. The ecology of herbivore- induced silicon defences in grasses. Funct. Ecol. 30, 1311–1322 (2016).CrossRefGoogle Scholar
  2. 2.
    Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 641–664 (1999).Google Scholar
  3. 3.
    Sommer, M., Kaczorek, D., Kuzyakov, Y. & Breuer, J. Silicon pools and fluxes in soils and landscapes-a review. J. Plant Nut. Soil Sci. 169, 310–329 (2006).CrossRefGoogle Scholar
  4. 4.
    Rogalla, H. & Romheld, V. Role of leaf apoplast in silicon- mediated manganese tolerance of Cucumis stivus L. Plant Cell Environ. 25, 549–555 (2002).CrossRefGoogle Scholar
  5. 5.
    Zhu, Z., Wei, G., Li, J., Qian, Q. & Yu, J. Silicon aleviated salt stress and increases antioxidant enzymes activity in leaves of salt stresses cucumber (Cucumis sativus L). Plant Sci. 167, 527–533 (2004).CrossRefGoogle Scholar
  6. 6.
    Kim, Y. H., Khan, A. L., Waqas, M. & Lee, I. J. Silicon regulates Antioxidant Activities of crops plant under Abiotic-Induced Oxidative streses A review. Front. Plant Sci. 6, 510 (2017).Google Scholar
  7. 7.
    Alexandre, A., Meunier, J. D., Lézine, A. M., Vincens, A. & Schwartz, D. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136, 213–229 (1997).CrossRefGoogle Scholar
  8. 8.
    Ding, T. P. et al. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim. Cosmochim. Acta 72, 1381–1395 (2008).CrossRefGoogle Scholar
  9. 9.
    Richmond, K. E. & Sussman, M. Got Silicon? The non essential benefit plant nutrreant. Curr. Opin. Plant Biol. 6, 268–272 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    Mitani, N. & Ma, J. F. Uptake system of silicon in different plant species. J. Exp. Bot. 56, 1255–1261 (2005).CrossRefPubMedGoogle Scholar
  11. 11.
    Pallavi, S., Ambuj, B. J., Rama, S. D. & Mohammad, P. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 217037, doi: 10.1155/2012/217037 (2012).Google Scholar
  12. 12.
    Guan, F., Tang, X., Fan, S., Zhao, J. & Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. CATENA 133, 455–460 (2015).CrossRefGoogle Scholar
  13. 13.
    Yang, Q. et al. Bamboo resources, utilization and exsitu conservation in Xishuangbanna, South-eastern China. J. Forest. Res. 19, 79–83 (2008).CrossRefGoogle Scholar
  14. 14.
    Huang, Y. P., Hou, C. H., Hsi, H. C. & Wu, J. W. Optimization of highly microporous activated carbon preparation from Moso bamboo using central composite design approach. J. Taiwan Inst. Chem. Eng. 50, 266–275 (2015).CrossRefGoogle Scholar
  15. 15.
    Hogarth, N. J. & Belcher, B. The contribution of bamboo to household income and rural livelihoods in a poor and mountainous county in Guangxi, China. Int. Forest. Rev. 15, 71–81 (2013).CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Zhong, T., Liu, L. & Ouyang, X. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE 10, e0135182 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).CrossRefPubMedGoogle Scholar
  18. 18.
    Shi, Q. et al. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66, 1551–1559 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    Takahashi, M. A. & Asada, K. Superoxide anion primeability of phospholipid membranes and chloroplast thylakoides. Arch. Biochem. Biophys. 226, 558–566 (1983).CrossRefPubMedGoogle Scholar
  20. 20.
    Song, A. et al. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344, 319–333 (2011).CrossRefGoogle Scholar
  21. 21.
    Sivanesan, I. & Jeong, B. R. Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Sci. World J. 521703, http://dx.doi.org/10.1155/2014/521703 (2014).Google Scholar
  22. 22.
    Feng, J. P., Shi, Q. H. & Wang, X. F. Effect of exogenoud silicon on photosyntesis capacity and antioxidant anzyme activity in choloroplast of cucumber seedling under excess maneges. Agric. Sci. China 8, 40–50 (2009).CrossRefGoogle Scholar
  23. 23.
    Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K. & Dubey, N. K. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol. Biochem. 96, 189–198 (2015).CrossRefPubMedGoogle Scholar
  24. 24.
    Farooq, M. A. et al. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxida tive stress in cotton. Ecotoxicol. Environ. Saf. 96, 242–249 (2013).CrossRefPubMedGoogle Scholar
  25. 25.
    Song, A. et al. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J. Hazard. Mater. 172, 74–83 (2009).CrossRefPubMedGoogle Scholar
  26. 26.
    Shi, G., Cai, Q., Liu, C. & Li, W. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul. 61, 45–52 (2010).CrossRefGoogle Scholar
  27. 27.
    Tang, H. et al. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ. Sci. Pollut. Res. Int. 22, 9999–10008 (2015).CrossRefPubMedGoogle Scholar
  28. 28.
    Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G. & Therios, I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ. Exper. Bot. 56, 54–62 (2006).CrossRefGoogle Scholar
  29. 29.
    Gunes, A., Inal, A., Bagci, E. G., Coban, S. & Pilbeam, D. J. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci. Hort. 113, 113–119 (2007).CrossRefGoogle Scholar
  30. 30.
    Khandekar, S. & Leisner, S. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J. Plant Physiol. 168, 699–705 (2011).CrossRefPubMedGoogle Scholar
  31. 31.
    Li, L. et al. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Biol. Trace. Elem. Res. 145, 101–108 (2012).CrossRefPubMedGoogle Scholar
  32. 32.
    Miao, B. H., Han, X. G. & Zhang, W. H. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann. Bot. 105, 967–973 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hall, J. L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11 (2002).CrossRefPubMedGoogle Scholar
  34. 34.
    Adrees, M. et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol. Environ. Saf. 119, 186–197 (2015).CrossRefPubMedGoogle Scholar
  35. 35.
    Leyva, A., Jarillo, J. A., Salinas, J. & Martinez-Zapater, J. M. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner. Plant Physiol. 108, 39–46 (1995).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sanchez-Ballesta, M. T., Zacarias, L., Granell, A. & Lafuente, M. T. Accumulation of PAL transcript and PAL activity as affected by heat-conditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits. J. Agric. Food Chem. 48, 2726–2731 (2000).CrossRefPubMedGoogle Scholar
  37. 37.
    Solecka, D. & Kacperska, A. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol. Plant 119, 253–262 (2003).CrossRefGoogle Scholar
  38. 38.
    Sgarbi, E., Fornasiero, R. B., Lins. A. P. & Bonatti, P. M. Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci. 165, 951–957 (2003).CrossRefGoogle Scholar
  39. 39.
    Zhang, X. The Measurement and Mechanism of Lipid Peroxidation and SOD, POD and CAT Activities in Biological System. In Research Methodology of Crop Physiology (Agriculture Press, Beijing, China, 1992).Google Scholar
  40. 40.
    Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).CrossRefPubMedGoogle Scholar
  41. 41.
    Bradford, M. M. A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Anal. Biochem. 72, 248–254 (1976).CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang, Z. L. Experiment instruction of plant physiology (Higher Education Publishers, Beijing, 2005).Google Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Nature B.V. 2018

Authors and Affiliations

  • Abolghassem Emamverdian
    • 1
    • 2
  • Yulong Ding
    • 1
    • 3
  • Yinfeng Xie
    • 1
    • 2
  1. 1.Co-Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
  2. 2.College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
  3. 3.Bamboo Research InstituteNanjing Forestry UniversityNanjingChina

Personalised recommendations