Chronic restraint stress induced neurobehavioral alterations and histological changes in rat

  • Kamilia GuedriEmail author
  • Hacène Frih
  • Aziez Chettoum
  • Rachid Rouabhi
Original article


Several lines of research on human and rodent subjects have demonstrated that stress results in multiple negative outcomes, including increased incidence of psychopathologies. Restraint stress in rats is known to adversely affect the physiological, psychological and reproductive axis in rats. Male rats were subjected to restraint stress for 3 hours consecutively for 14 days. The behavioral studies include Elevated Place Maze, Open Field and Morris Water Maze tests. Our results show that chronic restraint stress involved a development of anxiety in EPM, reduced motor activity in OF, impaired memory spatial in MWM tests, and induced change in testicular function, as reflected by significant decrease in plasma level of testosterone, correlate well with the damages in testis. The Results of the present study confirm that chronic restraint stress induced cognitive dysfunction, enhance anxiety like behavior and induced testicular damage in male rats Wistar.


Chronic restraint stress Anxiety Testis Behavior Memory Rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, C. J. & Cunningham, S. A. Social position, psychological stress, and obesity: a systematic review. J. Acad. Nutr. Diet. 112, 518–526 (2012).CrossRefPubMedGoogle Scholar
  2. 2.
    Stojanovich, L. & Marisavljevich, D. Stress as a trigger of autoimmune disease. Autoimmun. Rev. 7, 209–213 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    Brown, G. W. Life events and affective disorder: Replications and limitations. Psychosomatic. Med. 55, 248–259 (1993).CrossRefGoogle Scholar
  4. 4.
    Anisman, H. & Merali, Z. Understanding stress: Characteristics and Caveats. Alcohol. Res. Health. 23, 241–249 (1999).PubMedGoogle Scholar
  5. 5.
    De Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neuro. Sci. 6, 463–475 (2005).CrossRefGoogle Scholar
  6. 6.
    Kazushige, M. et al. Chronic Stress Induces Impairment of Spatial Working Memory Because of Prefrontal Dopaminergic Dysfunction. J. Neurosci. 20, 1568–1574 (2000).Google Scholar
  7. 7.
    Venero, C. et al. Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience 115, 1211–1219 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    Jonathan, S. & Jeffrey, G. T. Anxiety Behavior Induced in Mice by Acute Stress. Tula. Underg Res. J. 2015, 14–19 (2015).Google Scholar
  9. 9.
    Keichrio, M. & Hiroko, T. The impact of stress on reproduction: are glucocorticoids inhibitory or protective to gonadotropin secretion. Endocrinology 147, 1085–1090 (2006).CrossRefGoogle Scholar
  10. 10.
    Gold, P. W., Goodwin, F. K. & Chrousos, G. P. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress II. N. Engl. J. Med. 319, 413–420 (1988).CrossRefPubMedGoogle Scholar
  11. 11.
    Sheline, Y. I. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol. Psych. 48, 791–800 (2000).CrossRefGoogle Scholar
  12. 12.
    Shuichi, C. et al. Chronic restraint stress causes anxiety-and depression-like behaviors, down regulates glucocorticoid receptor expression and attenuates glutamate release induced by brain derived neurotrophic factor in the prefrontal cortex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 39, 112–119 (2012).CrossRefGoogle Scholar
  13. 13.
    Ray, K. R. & Hazra, D. Central inhibitory effect of Moringa oleifera root extract: possible role of neurotransmitters. Ind. J. Exp. Biol. 41, 1279–1284 (2003).Google Scholar
  14. 14.
    Huynh, T. N., Krigbaum, A. M., Hanna, J. J. & Conrad, C. D. Sex differences and phase of light cycle modify chronic stress effects on anxiety and depressive-like behavior. Behav. Brain. Res. 222, 212–222 (2011).CrossRefPubMedGoogle Scholar
  15. 15.
    Cliona, M. et al. Strain differences in the neurochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacol. Biochem. Behav. 97, 690–699 (2011).CrossRefGoogle Scholar
  16. 16.
    Viviana, V. L., Angélica, T. B., Lina, G. M., Alejandro, M. & Marisol, R. L. Acute restraint stress and corticosterone transiently disrupts novelty preference in an object recognition task. Behav. Brain. Res. 291, 60–66 (2015).CrossRefGoogle Scholar
  17. 17.
    Jocelien, D. A., Christiaan, H. V. & Berend, O. The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Front. Pharmacol. 4, 74 (2013).Google Scholar
  18. 18.
    Clarke, R. N., Klock, S. C., Geoghegan, A. & Travassos, D. E. Relationship between psychological stress and semen quality among in-vitro fertilization patients. Hum. Reprod. 14, 753–758 (1999).CrossRefPubMedGoogle Scholar
  19. 19.
    Ferin, M. in Neill’s physiology of reproduction 3rd (ed Neill, J.) 2627–2695 (Academic Press, USA, 2006).Google Scholar
  20. 20.
    Almeida, S. A., Kempinas, W. G. & Lamano Caravalho, T. L. Sexual behavior and fertility of male rats submitted to prolonged immobilization induced stress. Braz. J. Med. Biol. Res. 33, 1105–1109 (2000).CrossRefPubMedGoogle Scholar
  21. 21.
    Khandve, B., Gujar, V., Bokariya, P., Tarnekar, A. & Shende, M. Deranged spermatogenesis of adult Swiss Albino Mice as Effect of Immobilisation Stress -histological study. J. Pharm. 3, 7–10 (2013).Google Scholar
  22. 22.
    Orr, T. E. & Mann, D. R. Effects of restraint stress on plasma LH and testosterone concentrations, Leydig cell LH/hCG receptors, and in vitro testicular steroidogenesis in adult rats. Horm. Behav. 24, 324–341 (1990).CrossRefPubMedGoogle Scholar
  23. 23.
    Parisa, T., Rahim, A. & Mahyar, M. Restraint Stress is Biomedically Important in Male Reproductive Failure. International Conference on Chemical Biological and Medical Sciences 17–19 (2012).Google Scholar
  24. 24.
    Demura, R., Suzuki, T., Nakamura, S., Koomatsu, H. & Demura, H. Effect of immobilization stress on testosterone and inhibin in male rats. J. Androl. 10, 210–213 (1989).CrossRefPubMedGoogle Scholar
  25. 25.
    Tsuchiya, T. & Horii, I. Different effects of acute and chronic immobilization stress on plasma testosterone levels in male Syrian hamsters. Psychoneuroendocri nology 20, 95 (1995).CrossRefGoogle Scholar
  26. 26.
    Almeida, S. A. et al. Decreased spermatogenic and androgenic testicular functions in adult rats submitted to immobilization-induced stress from prepuberty. Braz. J. Med. Biol. Res. 31, 1443–1448 (1988).CrossRefGoogle Scholar
  27. 27.
    Mayfield, D. Neuroendocrinology: a science for psychosomatic medicine. Psychosomatics 21, 971–972 (1980).CrossRefPubMedGoogle Scholar
  28. 28.
    Knol., B. W. Stress and the endocrine hypothalamus pituitary testis system: a review. Vet Q 13, 104–114 (1991).CrossRefPubMedGoogle Scholar
  29. 29.
    McGivern, R. F. & Redei, E. Adrenalectomy reverse stress induced suppression of lutenizing hormone secretion in long term ovariectomized rats. Physio. Behav. 55, 1147–1150 (1994).CrossRefGoogle Scholar
  30. 30.
    Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev Neurosci. 10, 423–433 (2009).CrossRefPubMedGoogle Scholar
  31. 31.
    Schwabe, L., Joëls, M., Roozendaal, B., Wolf, O. T. & Oitzl, M. S. Stress effects on memory: An update and integration. Neurosci. Biobehav. Rev. 36, 1740–1749 (2012).CrossRefPubMedGoogle Scholar
  32. 32.
    Cazakoff, B. N., Johnson, K. J. & Howland, J. G. Converging effects of acute stress on spatial and recognition memory in rodents: a review of recent behavioral and pharmacological findings. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 34, 733–741 (2010).CrossRefGoogle Scholar
  33. 33.
    McGaugh, J. L. Memory a century of consolidation. Science 287, 248–251 (2000).CrossRefPubMedGoogle Scholar
  34. 34.
    Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in the rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2512 (1985).CrossRefPubMedGoogle Scholar
  35. 35.
    McEwen, B. S. & Sapolsky, R. M. Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216 (1995).CrossRefPubMedGoogle Scholar
  36. 36.
    Diamond, D. M., Fleshner, M., Ingersoll, N. & Rose, G. M. Psychological stress impairs spatial working memory: relevance to electrophysiological studies of hippocampal function. Behav. Neurosci. 110, 661–672 (1996).CrossRefPubMedGoogle Scholar
  37. 37.
    De Quervain, D. J. F., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–790 (1998).CrossRefPubMedGoogle Scholar
  38. 38.
    Conrad, C. D., Galea, L. A., Kuroda, Y. & McEwen, B. S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 110, 1321–1334 (1999).CrossRefGoogle Scholar
  39. 39.
    Oitzl, M. S. & de Kloet, E. R. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav. Neurosci. 108, 62–71 (1992).CrossRefGoogle Scholar
  40. 40.
    Vaher, P., Luine, V., Gould, E. & Mc Ewen, B. S. Adrenalectomy Impairs Spatial Memory in Rats. Ann. N. Y. Acad. Sci. 746, 405–407 (1994).CrossRefPubMedGoogle Scholar
  41. 41.
    Pugh, C. R., Tremblay, D., Fleshner, M. & Rudy, J. W. A selective role for corticosterone in contextual-fear conditioning. Behav. Neurosci. 111, 503–511 (1997).CrossRefPubMedGoogle Scholar
  42. 42.
    Kitraki, E., Kremmyda, O., Youlatos, D., Alexis, M. N. & Kittas, C. Gender-dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraintstress. Neuroscience 125, 47–55 (2004).CrossRefPubMedGoogle Scholar
  43. 43.
    Angrini, M., Leslie, J. C. & Shephard, R. A. Effects of propanolol, buspirone, pCPA, reserpine and chlordiazepoxide on open-field behavior. Pharm. Biochem. Behav. 59, 387–397 (1998).CrossRefGoogle Scholar
  44. 44.
    Sáenz, J. C. B., Villagra, O. R. & Trías, J. F. Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behav. Brain. Res. 169, 57–65 (2006).CrossRefGoogle Scholar
  45. 45.
    Pellow, S., Chopin, P., File, S. E. & Briley, M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Meth. 14, 149–167 (1985).CrossRefGoogle Scholar
  46. 46.
    Patin, V., Lordi, B., Vincent, A. & Caston, J. Effects of prenatal stress on anxiety and social interactions in adult rats. Brain. Res. Dev. 160, 265–274 (2005).CrossRefGoogle Scholar
  47. 47.
    Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11, 47–60 (1984).CrossRefGoogle Scholar
  48. 48.
    Engvall, E. & Perlman, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kamilia Guedri
    • 1
    Email author
  • Hacène Frih
    • 2
  • Aziez Chettoum
    • 3
  • Rachid Rouabhi
    • 1
  1. 1.Department of Applied BiologyUniversity Larbi TebessiTebessaAlgeria
  2. 2.Laboratory of Biosurveillance EnvironnementalUniversity Badji MokhtarAnnabaAlgeria
  3. 3.Department of Biology Animal, Faculty of SciencesUniversity Mentouri ConstantineConstantineAlgeria

Personalised recommendations