Toxicology and Environmental Health Sciences

, Volume 8, Issue 5, pp 341–348 | Cite as

The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones)

  • Paulos Getachew
  • Mehader Getachew
  • Jin Joo
  • Yoo Seong Choi
  • Dong Soo Hwang
  • Yong-Ki HongEmail author
Original article


Primary fatty acid amides are commonly found in grasses, microalgae, and animal. Oleamide and erucamide are fatty acid amide derivatives of oleic and brassidic acids, respectively. They are the most frequently used slip agents in industrial applications. We evaluated their potential application as antifouling coatings on submerged surfaces. The deterrent properties of parafilm wax plates containing oleamide and erucamide against the surface recruitment of diatoms and biofilms and the attachment strength of abalones were assessed. Both amides were effective, but oleamide had 1.4-2.5-fold greater deterrent effects against all three groups of foulers. The amides produced slippery surfaces to which the biofoulers attached weakly. The benthic organisms were readily dislodged by water motion. Thus, oleamide has potential as an ingredient in antifoulant coating materials. We also developed a rapid abalone detachment assay that can be used to test the efficacy of antifouling agents against slow-growing members of the macrobenthos.


Abalone Antifouling Diatom Erucamide Oleamide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yebra, D. M., Kiil, S. & Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50, 75–104 (2004).CrossRefGoogle Scholar
  2. 2.
    Hall, L. W. & Pinkney, A. E. Acute and sublethal affects of organotin compounds on aquatic biota: An interpretative literature evaluation. CRC Crit. Rev. Toxicol. 14, 159–209 (1985).CrossRefGoogle Scholar
  3. 3.
    Fletcher, L. R. & Callow, E. M. The settlement, attachment and establishment of marine algal spores. Brit. Phycol. J. 27, 303–329 (1992).CrossRefGoogle Scholar
  4. 4.
    Chaudhury, K. M., Finlay, J., Chung, Y. J., Callow, E. M. & Callow, A. J. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn Enteromorpha linza) from poly dimethylsiloxane (PDMS) model networks. Biofouling 21, 41–48 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    Cho, J. Y. Antifouling activity of giffinisterone B and oleamide isolated from a filamentous bacterium Leucothrix mucor culture against Ulva pertusa. Kor. J. Fish. Aquat. Sci. 45, 30–34 (2012).Google Scholar
  6. 6.
    Kang, J.-Y. et al. Antifouling effects of the periostracum on algal spore settlement in the mussel Mytilus edulis. Fish. Aquat. Sci. 19, 34–39 (2016).CrossRefGoogle Scholar
  7. 7.
    Garrido-López, Á., Esquiu, V. & Tena, M. T. Determination of oleamide and erucamide in polyethylene films by pressurised fluid extraction and gas chromatography. J. Chromatogr. A 1124, 51–56 (2006).CrossRefPubMedGoogle Scholar
  8. 8.
    Mansha, M., Gauthier, C., Gerard, P. & Schirrer, R. The effect of plasticization by fatty acid amides on the scratch resistance of PMMA. Wear 271, 671–679 (2011).CrossRefGoogle Scholar
  9. 9.
    de Zoete, M. C., Kock-van Dalen, A. C., van Rantwijk, F. & Sheldon, R. A. Lipase-catalysed ammoniolysis of lipids. A facile synthesis of fatty acid amides. J. Mol. Catalysis B: Enzymatic 1, 109–113 (1996).Google Scholar
  10. 10.
    Fowler, C. J., Jonsson, K.-O. & Tiger, G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem. Pharmacol. 62, 517–526 (2001).CrossRefPubMedGoogle Scholar
  11. 11.
    Dembitsky, V. M., Shkrob, I. & Rozentsvet, O. A. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry 54, 965–967 (2000).CrossRefPubMedGoogle Scholar
  12. 12.
    Cravatt, F. B. et al. Chemical characterization of a family of brain lipids that induce sleep. Science 268, 1506–1509 (1995).CrossRefPubMedGoogle Scholar
  13. 13.
    Visek, K. E. in Surfactant Science Series, Vol. 34 (ed Richmond, J. M.) 1-50 (Marcel Dekker, New York, 1990).Google Scholar
  14. 14.
    Huitrón-Reséndiz, S., Gombart, L., Cravatt, B. F. & Henriksen, S. J. Effect of oleamide on sleep and its relationship to blood pressure, body temperature, and locomotor activity in rats. Exp. Neurol. 172, 235–243 (2001).CrossRefPubMedGoogle Scholar
  15. 15.
    Ge, L. et al. Differential proteomic analysis of the antidepressive effects of oleamide in a rat chronic mild stress model of depression. Pharmacol. Biochem. Be. 131, 77–86 (2015).CrossRefGoogle Scholar
  16. 16.
    Hopps, J. J., Dunn, W. R. & Randall, M. D. Enhanced vasorelaxant effects of the endocannabinoid-like mediator, oleamide, in hypertension. Eur. J. Pharmacol. 684, 102–107 (2012).CrossRefPubMedGoogle Scholar
  17. 17.
    Oh, Y. T. et al. Oleamide suppresses lipopolysaccharideinduced expression of iNOS and COX-2 through inhibition of NF-kB activation in BV2 murine microglial cells. Neurosci. Lett. 474, 148–153 (2010).CrossRefPubMedGoogle Scholar
  18. 18.
    Wei, X. Y., Yang, J. Y., Dong, Y. X. & Wu, C. F. Anxiolytic-like effects of oleamide in group-housed and socially isolated mice. Prog. Neuro-Psychoph. 31, 1189–1195 (2007).CrossRefGoogle Scholar
  19. 19.
    Dougalis, A., Lees, G. & Ganellin, C. R. The sleep lipid oleamide may represent an endogenous anticonvulsant: an in vitro comparative study in the 4-aminopyridine rat brain-slice model. Neuropharmacology 46, 541–554 (2004).CrossRefPubMedGoogle Scholar
  20. 20.
    Mendelson, W. B. & Basile, A. S. The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology 25, S36–S39 (2001).CrossRefPubMedGoogle Scholar
  21. 21.
    Yang, J.-Y., Abe, K., Xu, N.-J., Matsuki, N. & Wu, C.-F. Oleamide attenuates apoptotic death in cultured rat cerebellar granule neurons. Neurosci. Lett. 328, 165–169 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    Wakamatsu, K., Masaki, T., Itoh, F., Kondo, K. & Sudo, K. Isolation of fatty acid amide as an angiogenic principle from bovine mesentery. Biochem. Biophys. Res. Commun. 168, 423–429 (1990).CrossRefPubMedGoogle Scholar
  23. 23.
    Hamberger, A. & Stenhagen, G. Erucamide as a modulator of water balance: new function of a fatty acid amide. Neurochem. Res. 28, 177–185 (2003).CrossRefPubMedGoogle Scholar
  24. 24.
    Madaeni, S. S., Falsafi, M. & Ghaemi, N. A novel method for preparation of low-fouling membranes: Surface coating by extracted wax from leafy cabbage. Desalination 283, 148–155 (2011).CrossRefGoogle Scholar
  25. 25.
    Hoipkemeier-Wilson, L. et al. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling 20, 53–63 (2004).CrossRefPubMedGoogle Scholar
  26. 26.
    Bowen, J. et al. The influence of surface lubricity on the adhesion of Navicula perminuta and Ulva linza to alkanethiol self-assembled monolayers. J. Roy. Soc. Interface 4, 473–477 (2007).CrossRefGoogle Scholar
  27. 27.
    Lin, A. Y. M., Brunner, R., Chen, P. Y., Talke, F. E. & Meyers, M. A. Underwater adhesion of abalone: The role of van der Waals and capillary forces. Acta Mater. 57, 4178–4185 (2009).CrossRefGoogle Scholar
  28. 28.
    Bertin, M. J., Zimba, P. V., Beauchesne, K. R., Huncik, K. M. & Moeller, P. D. R. Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum carter. Harmful Algae 20, 111–116 (2012).CrossRefGoogle Scholar
  29. 29.
    Shao, J. et al. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843. Ecotoxicology 25, 225–233 (2016).CrossRefPubMedGoogle Scholar
  30. 30.
    Greene, G. W. et al. Lubricin: A versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials 53, 127–136 (2015).CrossRefPubMedGoogle Scholar
  31. 31.
    Heo, J. et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J. Am. Chem. Soc. 134, 20139–20145 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee, H., Scherer, N. F. & Messersmith, P. B. Singlemolecule mechanics of mussel adhesion. Proc. Nat. Acad. Sci., USA 103, 12999–13003 (2006).CrossRefGoogle Scholar
  33. 33.
    Guillard, R. R. & Ryther, H. J. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CrossRefPubMedGoogle Scholar
  34. 34.
    Subramanyam, E., Mohandoss, S. & Shin, W. H. Synthesis, characterization, and evaluation of antifouling polymers of 4-acryloyloxybenzaldehyde with methyl methacrylate. J. Appl. Poly. Sci. 112, 2741–2749 (2009).CrossRefGoogle Scholar
  35. 35.
    Provasoli L. in Cultures and Collections of Algae (eds Watanabe, A. & Hattori, A.) 63–79 (The Japanese Society of Plant Physiologists, Tokyo, 1968).Google Scholar
  36. 36.
    Kochert G. in Handbook of Phycological Methods, Vol. 2 (eds Hellebust, A. J. & Craigie, S. J.) 95–97 (Cambridge University Press, Cambridge, 1978).Google Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Paulos Getachew
    • 1
    • 2
  • Mehader Getachew
    • 1
  • Jin Joo
    • 3
  • Yoo Seong Choi
    • 4
  • Dong Soo Hwang
    • 5
  • Yong-Ki Hong
    • 1
    Email author
  1. 1.Department of BiotechnologyPukyong National UniversityNamgu, BusanRepublic of Korea
  2. 2.Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.Department of Applied ChemistryKyungpook National UniversityBukgu, DaeguRepublic of Korea
  4. 4.Department of Chemical EngineeringChungnam National UniversityYuseonggu, DaejeonRepublic of Korea
  5. 5.School of Environmental Science and EngineeringPohang University of Science and TechnologyNamgu, PohangRepublic of Korea

Personalised recommendations