Distribution of perfluoroalkyl substances in water from industrialized bays, rivers and agricultural areas in Korea

  • Nguyen Hoang Lam
  • Byung-Kyu Min
  • Chon-Rae Cho
  • Kyung-Hwa Park
  • Ji-Sung Ryu
  • Pil-Je Kim
  • Kyung-Hee Choi
  • Masatoshi Morita
  • Hyeon-Seo ChoEmail author


Perfluoroalkyl substances (PFASs) have been found in water environment globally. However, the difference on occurrence profiles between PFASs in water from coastal areas and inland rivers or/and agricultural areas is still limited. In this study, the presence of thirteen PFASs in sixty-five surface water samples collected from coastal areas of three southeastern industrialized bays, four major rivers, and six rice field areas in Korea were analyzed. Total PFAS concentrations (ng/L) range from 0.22-73.9 (mean=22.1) for the major rivers, 0.54-3.19 (mean=1.77) for the rice field areas, and <LOQ-27.8 (mean=3.90) for the industrialized bays. The most frequently detected PFASs were perfluorooctanoic acid, PFOA (86.2%) for perfluorocarboxylic acids, PFCAs and perfluorooctance sulfonic acid, PFOS (78.5%) for perfluorosulfonic acids, PFSAs. Positive significant Pearson correlations were determined for PFNA and PFDA (p<0.01, r=0.91) and PFOA and PFNA (p<0.01, r= 0.72). The results of this study indicate a general ascending order of PFCAs, PFSAs and PFASs concentrations in six sampling site groups categorized by potential PFASs emission sources as non-source <agricultural source<“outer bay source”<“inner bay source”<municipal source<wastewater treatment plant (WWTP) discharge. Significant differences (Tukey post hoc test in ANOVA, p<0.05) in PFASs concentration in water samples from sampling sites that receive WWTP discharge than those from others were found. Despite a decreasing trend of PFASs contamination in surface water from Nakdong River basin after the restriction of manufacture and usage of PFOS and its related compounds in 2011 was determined in Korea, the results of this study demonstrate the continuing input of PFAS in Korean rivers, rice field areas and industrialized bays. The PFOS and PFOA concentrations in water were below the threshold for adverse health effects. This study provides information for a better understanding of PFASs and the ongoing input of PFASs in Korean aquatic environment.


PFOS PFOA Korea Surface water River Coastal water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kannan, K. et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch. Environ. Contam. Toxicol. 48, 559–566 (2005).CrossRefPubMedGoogle Scholar
  2. 2.
    Lau, C., Butenhoff, J. L. & Rogers, J. M. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol. Appl. Pharmacol. 198, 231–241(2004).CrossRefPubMedGoogle Scholar
  3. 3.
    Giesy, J. P. & Kannan, K. Global distribution of perfluorooctance sufonate in wildlife. Environ. Sci. Technol. 35, 1339–1342 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    Cho, C. R. et al. Concentration and correlations of perfluoroalkyl substances in whole blood among subjects from three different geographical areas in Korea. Sci. Total. Environ. 512-513, 397–405 (2015).CrossRefPubMedGoogle Scholar
  5. 5.
    Yamashita, N. et al. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environ. Sci. Technol. 38, 5522–5528 (2004).CrossRefPubMedGoogle Scholar
  6. 6.
    Yu, J., Hu, J., Tanaka, S. & Fujii, S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Res. 43, 2399–2408 (2009).CrossRefPubMedGoogle Scholar
  7. 7.
    Sinclair, E. & Kannan, K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ. Sci. Technol. 40, 148–1414 (2006).Google Scholar
  8. 8.
    Tomy, G. T. et al. Fluorinated organic compounds in an eastern Arctic marine food web. Environ. Sci. Technol. 38, 6475–6481 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    Korean Ministry of Environment. Book of Persistent Organic Pollutants Control Act. p14 and;jsessionid=MxLnHEAcP21iegtkeatPeBPHe4pPJV5SL1SiyRMHJkSfQ0PGq9N3T17aKJ2Ls1eM. meweb1vhost_servlet_engine1?fileId=98803&fileSeq=1. (2013).Google Scholar
  10. 10.
    Naile, J. E. et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ. Pollut. 158, 1237–1244 (2010).CrossRefPubMedGoogle Scholar
  11. 11.
    Yamashita, N. et al. A global survey of perfluorinated acids in oceans. Mar. Pollut. Bull. 51, 658–668 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    Guo, R. et al. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Res. 44, 3476–3486 (2010).CrossRefPubMedGoogle Scholar
  13. 13.
    Lam, N. H. et al. Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey. Sci. Total. Environ. 491-492, 154–162 (2014).CrossRefPubMedGoogle Scholar
  14. 14.
    Kim, S. K. et al. Occurrence of perfluorooctanoate and perfluorooctanesulfonate in the Korean water system: implication to water intake exposure. Environ. Pollut. 159, 1167–1173 (2011).CrossRefPubMedGoogle Scholar
  15. 15.
    Rostkowski, P. et al. Perfluorinated compounds in streams of the Shihwa industrial zone and Lake Shihwa, South Korea. Environ. Toxicol. Chem. 25, 2374–2380 (2006).CrossRefPubMedGoogle Scholar
  16. 16.
    Cho, H. S., Lam, N. H., Lee, J. S. & Seol, S. W. Organotins pollutions in seawater and sediment around a shipyard. Toxicol. Environ. Health. Sci. 6, 33–40 (2014).CrossRefGoogle Scholar
  17. 17.
    Hong, S. H. et al. Assessment of sediment contamination by persistent organic pollutants in Gyeonggi Bay, Korea. Toxicol. Environ. Health. Sci. 1, 56–63 (2009).CrossRefGoogle Scholar
  18. 18.
    Kim, N. S. et al. Status and trend of butyltin contamination in Masan Bay, Korea. Toxicol. Environ. Health. Sci. 3, 46–53 (2011).CrossRefGoogle Scholar
  19. 19.
    Kim, Y. H. et al. Contamination and bioconcentration of polybrominated diphenyl ethers (PBDEs) in Gwangyang Bay, Korea. Toxicol. Environ. Health. Sci. 4, 42–49 (2012).CrossRefGoogle Scholar
  20. 20.
    Shim, W. J. et al. Occurrence and spatial distribution of organic contaminants in sediments from Chinhae Bay, Korea. Toxicol. Environ. Health. Sci. 2, 119–124 (2010).CrossRefGoogle Scholar
  21. 21.
    Cho, C. R., Cho, H. S. & Kannan, K. Residual characteristics of perfluorinated compounds in Nakdong River watershed. Toxicol. Environ. Health. Sci. 2, 60–72 (2010).CrossRefGoogle Scholar
  22. 22.
    National Institute of Environmental Research of Korea. Pattern No. NIER-PD2014-110. http://webbook. (2015).Google Scholar
  23. 23.
    So, M. K. et al. Pefluorinated compounds in coastal waters of Hong Kong, south China, and Korea. Environ. Sci. Technol. 38, 4056–4063 (2004).CrossRefPubMedGoogle Scholar
  24. 24.
    So, M. K. et al. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 68, 2085–2095 (2007).CrossRefPubMedGoogle Scholar
  25. 25.
    Lin, A. Y. C., Panchangam, S. C. & Lo, C. C. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ. Pollut. 157, 1365–1372 (2009).CrossRefPubMedGoogle Scholar
  26. 26.
    Hu, J., Yu, J., Tanaka, S., & Jujii, S. Perfluorooactane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment of Singapore. Water. Air. Soil. Pollut. 216, 179–191 (2011).CrossRefGoogle Scholar
  27. 27.
    Nakayama, S. et al. Perfluorinated compounds in the Cape Fear Drainage Basin in North Carolina. Environ. Sci. Technol. 41, 5271–5276 (2007).CrossRefPubMedGoogle Scholar
  28. 28.
    Huset, C. A. et al. Occurrence and mass flows of fluorochemicals in the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 42, 6369–6377 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Munoz, G. et al. Spatial distribution and partitioning behavior of selected poly-and perluoroalkyl substance in freshwater ecosystems: A French nationwide survey. Sci. Total Environ. 517, 48–56 (2015).CrossRefPubMedGoogle Scholar
  30. 30.
    Senthilkumar, K., Ohi, E., Sajwan, K., Takasuga, T. & Kannan, K. Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bull. Environ. Contam. Toxicol. 79, 427–431 (2007).CrossRefPubMedGoogle Scholar
  31. 31.
    Zainuddin, K. et al. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in surface water from the Langat River, Penisular Malysia. Environ. Forensics 13, 82–92 (2012).CrossRefGoogle Scholar
  32. 32.
    Orata, F., Quinete, N., Werres, F. & Wilken, R. D. Determination of perfluorooctanoic acid and perfluorooactane sulfonate in Lake Victoria Gulf Water. Bull. Environ. Contam. Toxicol. 82, 218–222 (2009).CrossRefPubMedGoogle Scholar
  33. 33.
    Loos, R. et al. Analysisof perfluorooctanoate (PFOA) and other perfluorinated compounds (PFCs) in the River Po watershed in N-Italy. Chemosphere 71, 306–313 (2008).CrossRefPubMedGoogle Scholar
  34. 34.
    Yeung, L. W. Y. et al. A survey of perfluorinated compounds in surface water and biota including dolphins from the Ganges Rvier and in other waterbodies in India. Chemosphere 76, 55–62 (2009).CrossRefPubMedGoogle Scholar
  35. 35.
    Lien, N. P. H. et al. Contamination of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in surface water of the Yodo River Basin (Japan). Desalination 226, 338–347 (2008).CrossRefGoogle Scholar
  36. 36.
    Saito, N. et al. Perfluorooctane sulfonate concentration in surface water in Japan. Arch. Environ. Contam. Toxicol. 45, 149–158 (2003).CrossRefPubMedGoogle Scholar
  37. 37.
    Ju, X. D., Jin, Y., Sasaki, K. & Saito, N. Perfluorinated surfactants in surface, subsurface water and micolayer from Dailian Coastal Waters in China. Environ. Sci. Technol. 42, 3538–3542 (2008).CrossRefPubMedGoogle Scholar
  38. 38.
    Kim, S. K. et al. Wastewater treatment plants (WWTPs)-derived national discharge loads of perfluorinated compounds (PFCs). J. Hazard. Mater. 201-202, 82–91 (2012).CrossRefPubMedGoogle Scholar
  39. 39.
    Zushi, Y., Takeda, T. & Masunaga, S. Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan. Chemosphere 71, 1566–1573 (2008).CrossRefPubMedGoogle Scholar
  40. 40.
    Murakami, M., Shinohara, H. & Takada, H. Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs). Chemosphere 74, 487–493 (2009).CrossRefPubMedGoogle Scholar
  41. 41.
    Furl, C. V., Meredith, C. A., Strynar, M. J. & Nakayama, S. F. Relative importance of wastewater treatment plants and non-point sources of perfluorinated compounds to Washington State rivers. Sci. Total. Environ. 409, 2902–2907 (2011).CrossRefPubMedGoogle Scholar
  42. 42.
    Giesy, J. P. et al. in Environmental Contamination and Toxicology (ed Whitacre, D.M.) 1-52 (Springer New York Dordrecht Heidelberg, London, 2010).Google Scholar
  43. 43.
    Korea Meteorological Administration. Accessed in May 26, 2015 (in Korean).Google Scholar
  44. 44.
    Taniyasu, S. et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short-and long-chain perfluorinated acids in water and biota. J. Chromatogr. A. 1093, 89–97 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nguyen Hoang Lam
    • 1
  • Byung-Kyu Min
    • 1
  • Chon-Rae Cho
    • 1
  • Kyung-Hwa Park
    • 2
  • Ji-Sung Ryu
    • 2
  • Pil-Je Kim
    • 2
  • Kyung-Hee Choi
    • 2
  • Masatoshi Morita
    • 3
  • Hyeon-Seo Cho
    • 1
    Email author
  1. 1.College of Fisheries and Ocean SciencesChonnam National UniversityYeosuKorea
  2. 2.National Institute of Environmental ResearchIncheonKorea
  3. 3.Institute for Sustainability and PeaceUnited Nations UniversityTokyoJapan

Personalised recommendations