Toxicology and Environmental Health Sciences

, Volume 7, Issue 5, pp 251–261 | Cite as

Recent progress of M13 virus-based chemical and biological sensing

  • Jong-Sik Moon
  • Chuntae Kim
  • Won-Geun Kim
  • Jiye Han
  • Jong-Ryeul Sohn
  • Jin-Woo Oh
Mini review
  • 101 Downloads

Abstract

Discriminating the minute content of chemicals both in precise and concise way is to use core technique for detecting water pollution. Recently a novel virus-based sensor system functionalized by M13 bacte-riophage-based structure got great attention. This system can detect various chemicals in superior sensitivity and selectivity. The filamentous and consistent shape of M13 bacteriophage can be ordered by self-assembly technique in high established form. This allows M13 bacteriophage as a template to build homogeneous distribution and permeable network structures of inorganic nanostructures under mild conditions. Phage display, genetic engineering technique of M13 bacteriophage, is another strong feature of M13 bacteriophage as a functional building block. The numerous possibility of genetic modification of M13 bacteriophage is definitely a key feature, and we have seen only the tip of an iceberg of it so far. Here, we review the very recent progress in the application of M13 bacteriophage self-assembly structures to a sensor system and discuss about M13 bacteriophage technology of our future.

Keywords

Biocompatibility Genetic engineering M13 bacteriophage Self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    UN WWAP 2003. United Nations World Water Assessment Programme. The World Water Development Report 1: Water for People, Water for Life. UNESCO: Paris (2003).Google Scholar
  2. 2.
    UNICEF WHO 2008. UNICEF and World Health Organization Joint Monitoring Programme for Water Supply and Sanitation. Progress on Drinking Water and Sanitation: Special Focus on Sanitation. UNICEF: New York and WHO: Geneva (2008).Google Scholar
  3. 3.
    World Health Organization 2002. World Health Report: Reducing Risks, Promoting Healthy Life, http://www.who.int/whr/2002/en/whr02en.pdf (2002).Google Scholar
  4. 4.
    UN WWAP 2009. United Nations World Water Assessment Programme. The World Water Development Report 3: Water in a Changing World. UNESCO: Paris (2009).Google Scholar
  5. 5.
    Richardson, S. D. Environmental mass spectrometry: emerging contamints and current issues. Anal. Chern. 82, 4742–4774 (2010).CrossRefGoogle Scholar
  6. 6.
    United States Environmental Protection Agency. Contaminant Candidate List 3 -CCL 3. EPA, http://www2.epa.gov/ccl/contaminant-candidate-list-3-ccl-3 (2009).Google Scholar
  7. 7.
    Martin-Herranz, A. et al. Surface Functionalized Cationic Lipid-DNA Complexes for Gene Delivery: PEGylated Lamellar Complexes Exhibit Distinct DNA-DNA Interaction Regimes. Biophys. J. 86, 1160–1168 (2004).PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Moon, J. S. et al. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities. Mini-Rev Org. Chem. 12, 271–281 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chung, W. J., Lee, D. Y. & Yoo, S. Y. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine. Int. J. Nanomed. 9, 5825–5836 (2014).Google Scholar
  10. 10.
    Lee, Y. J. et al. Fabricating genetically engineered highpower lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).PubMedGoogle Scholar
  11. 11.
    Lee, Y. J. et al. Virus-templated Au and Au-Pt coreshell nanowires and their electrocatalytic activities for fuel cell applications. Energy Sci. 5, 8328–8334 (2012).CrossRefGoogle Scholar
  12. 12.
    Mao, C., Liu, A. & Cao, B. Virus-based chemical and biological sensing. Angewandte 48, 6790–6810 (2009).CrossRefGoogle Scholar
  13. 13.
    Sundar, V. C. et al. Fibre-optical features of a glass sponge. Nature 424, 899–900 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    Espinosa, H. D. et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2, 173 (2011).PubMedCrossRefGoogle Scholar
  15. 15.
    Aizenberg, J. et al. Skeleton of euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    Budzikiewicz, H. Bacterial aromatic sulfonates - A bucherer reaction in nature? Mini-Rev. Org. Chem. 3, 93–97 (2006).CrossRefGoogle Scholar
  17. 17.
    Hong, S. W., Xia, J. & Lin, Z. Spontaneous Formation of Mesoscale Polymer Patterns in an Evaporating Bound Solution. Advanced Materials 19, 1413–1417 (2007).CrossRefGoogle Scholar
  18. 18.
    Hong, S. W., Wang, J. & Lin, Z. Evolution of Ordered Block Copolymer Serpentines into a Macroscopic, Hierarchically Ordered Web. Angew. Chem. Int. Ed. 48, 8356–8360 (2009).CrossRefGoogle Scholar
  19. 19.
    Dogic, Z. & Fraden, S. Ordered phases of filamentous viruses. Curr. Opin. Colloid Interface Sci. 11, 47–55 (2006).CrossRefGoogle Scholar
  20. 20.
    Yang, S. H., Chung, W. J., Mcfarland, S. & Lee, S. W. Assembly of Bacteriophage into Functional Materials. Chem. Rec. 13, 43–59 (2013).PubMedCrossRefGoogle Scholar
  21. 21.
    Gimenez, S. et al. Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties. J. Appl. Phys. 108, 064310 (2010).CrossRefGoogle Scholar
  22. 22.
    Karpan, V. M. et al. 10-Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 78, 195419 (2008).CrossRefGoogle Scholar
  23. 23.
    Smith, G. P. & Petrenko, V. A. Phage Display. Chem. Rev. 97, 391–410 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    Cao, B. & Mao, C. in Phage Nanobiotechnology. (eds Petrenko, V. & Smith, G. P.) (RSC publishing, Cambridge, 2011).Google Scholar
  26. 26.
    Brissette, R. & Goldstein, N. I. in Methods in Molecular Biology (eds Fisher, P.) (Humana, Totowa, 2007).Google Scholar
  27. 27.
    Flynn, C. E., Lee, S. W., Peelle, B. R. & Belcher, A. M. Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51, 5867–5880 (2003).CrossRefGoogle Scholar
  28. 28.
    Cui, Y. et al. Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides. Nano Lett. 10, 4559–4565 (2010).PubMedCrossRefGoogle Scholar
  29. 29.
    Kim, S. N. et al. Preferential Binding of Peptides to Graphene Edges and Planes. J. Am. Chem. Soc. 133, 14480–14483 (2011).PubMedCrossRefGoogle Scholar
  30. 30.
    Mao, C. B. et al. Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science 303, 213–217 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    Mio, C. B. et al. Viral assembly of oriented quantum dot nanowires. Natl. Acad. Sci. USA 100, 6946–6951 (2003).CrossRefGoogle Scholar
  32. 32.
    Huang, Y. et al. Programmable Assembly of Nanoarchitectures Using Genetically Engineered Viruses. Nano Lett. 5, 1429–1434 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    Sapsford, K. E., Berti, L. & Medintz, I. L. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations. Angew. Chem. Int. Ed. 45, 4562–4588 (2006).CrossRefGoogle Scholar
  34. 34.
    Demchenko, A. P. The Concept of ?-Ratiometry in Fluorescence Sensing and Imaging. J. Fluoresc. 20, 1099–1128 (2010).PubMedCrossRefGoogle Scholar
  35. 35.
    Kikuchi, K., Takakusa, H. & Nagano, T. Recent advances in the design of small molecule-based FRET sensors for cell biology. TrAC, Trends Anal. Chem. 23, 407–415 (2004).CrossRefGoogle Scholar
  36. 36.
    Mello, J. V. & Finney, N. S. Dual-Signaling Fluorescent Chemosensors Based on Conformational Restriction and Induced Charge Transfer. Angew. Chem. Int. Ed. 40, 1536–1538 (2001).CrossRefGoogle Scholar
  37. 37.
    Deo, S. & Godwin, H. A. A Selective, Ratiometric Fluorescent Sensor for Pb2+. J. Am. Chem. Soc. 122, 174–175 (2000).CrossRefGoogle Scholar
  38. 38.
    Chen, L., Wu, Y., Lin, Y. & Wang, Q. Virus-templated FRET platform for the rational design of ratiometric fluorescent nanosensors. Chem. Commun. 51, 10190–10193 (2015).CrossRefGoogle Scholar
  39. 39.
    Yoo, S. Y., Oh, J. W. & Lee, S. W. Phage-Chips for Novel Optically Readable Tissue Engineering Assays. Langmuir 28, 2166–2172 (2012).PubMedCrossRefGoogle Scholar
  40. 40.
    Yoo, S. Y. et al. Facile patterning of genetically engineered M13 bacteriophage for directional growth of human fibroblast cells. Soft Matter 7, 363–368 (2011).CrossRefGoogle Scholar
  41. 41.
    Yoo, S. Y., Merzlyak, A. & Lee, S. W. Facile growth factor immobilization platform based on engineered phage matrices. Soft Matter 7, 1660–1666 (2011).CrossRefGoogle Scholar
  42. 42.
    Yoo, S. Y. et al. Early Osteogenic Differentiation of Mouse Preosteoblasts Induced by Collagen-Derived DGEA-Peptide on Nanofibrous Phage Tissue Matrices. Biomacromolecules 12, 987–996 (2011).PubMedCrossRefGoogle Scholar
  43. 43.
    Lee, J. H. et al. M13 Bacteriophage as Materials for Amplified Surface Enhanced Raman Scattering Protein Sensing. Adv. Funct. Mater. 24, 2079–2084 (2014).CrossRefGoogle Scholar
  44. 44.
    Kneipp, K. et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).CrossRefGoogle Scholar
  45. 45.
    Nie, S. & Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275, 1102–1006 (1997).PubMedCrossRefGoogle Scholar
  46. 46.
    Kneipp, K. et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chem. Rev. 99, 2957–2975 (1999).PubMedCrossRefGoogle Scholar
  47. 47.
    Cao, Y. C., Jin, R. C. & Mirkin, A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 297, 1536–1540 (2002).PubMedCrossRefGoogle Scholar
  48. 48.
    Kneipp, K. et al. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14, 597–624 (2002).CrossRefGoogle Scholar
  49. 49.
    Lim, D. K. et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60–67 (2010).PubMedCrossRefGoogle Scholar
  50. 50.
    Lim, D. K. et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6, 452–460 (2011).PubMedCrossRefGoogle Scholar
  51. 51.
    Visona, A. et al. Accumulation of zinc-phthalocyanine (Zn-Pc) in the aorta of atherosclerotic rabbits. Lasers Med. Sci. 4, 167–170 (1989).CrossRefGoogle Scholar
  52. 52.
    Sibrain-Vazquez, M. et al. Mitochondria Targeting by Guanidine-and Biguanidine-Porphyrin Photosensitizers. Bioconjugate Chem. 19, 705–713 (2008).CrossRefGoogle Scholar
  53. 53.
    Nunes, S. M. T., Sguilla, F. S. & Tedesco, A. C. Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz. J. Med. Biol. Res. 37, 273–284 (2004).PubMedCrossRefGoogle Scholar
  54. 54.
    Kawakami, K., Nishihara, Y. & Hirano, K. Effect of Hydrophilic Polymers on Physical Stability of Liposome Dispersions. J. Phys. Chem. B 105, 2374–2385 (2001).CrossRefGoogle Scholar
  55. 55.
    Ruysschaert, T. et al. Liposome-based nanocapsules. IEEE Trans. Nanobiosci. 3, 49–55 (2004).CrossRefGoogle Scholar
  56. 56.
    Ngweniform, P., Abbineni, G., Cao, B. & Mao, C. Self-Assembly of Drug-Loaded Liposomes on Genetically Engineered Target-Recognizing M13 Phage: A Novel Nanocarrier for Targeted Drug Delivery. Small 5, 1963–1969 (2009).PubMedCrossRefGoogle Scholar
  57. 57.
    Ghosh, D. et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 7, 677–682 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Park, J. N. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 3, 891–895 (2004).CrossRefGoogle Scholar
  59. 59.
    Kelly, K. A., Waterman, P. & Weissleder, R. In vivo imaging of molecularly targeted phage. Neoplasia 8, 1011–1018 (2006).PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Clark, C. J. & Sage, E. H. A prototypic matricellular protein in the tumor microenvironment-where there’s SPARC, there’s fire. J. Cell Biochem. 104, 721–732 (2008).PubMedCrossRefGoogle Scholar
  61. 61.
    Yoo, P. J. et al. Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Mater. 5, 234–240 (2006).CrossRefGoogle Scholar
  62. 62.
    Ju, S. M. et al. Single-carbon discrimination by selected peptides for individual detection of volatile organic compounds. Scientific Reports 5, 9196 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kim, S. N. et al. Preferential Binding of Peptides to Graphene Edges and Planes. J. Am. Chem. Soc. 133, 14480–14483 (2011).PubMedCrossRefGoogle Scholar
  64. 64.
    Ablat, H., Yimit, A., Mahmut, M. & Itoh, K. Nafion film/K(1)-exchanged glass optical waveguide sensor for BTX detection. Anal. Chem. 80, 7678–7683 (2008).PubMedCrossRefGoogle Scholar
  65. 65.
    Dang, X. N. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 6, 377–384 (2011).PubMedCrossRefGoogle Scholar
  66. 66.
    Jaworski, J. W. et al. Evolutionary Screening of Biomimetic Coatings for Selective Detection of Explosives. Langmuir 24, 4938–4943 (2008).PubMedCrossRefGoogle Scholar
  67. 67.
    Jin, H. et al. Quantum dot-engineered M13 virus layer-by-layer composite films for highly selective and sensitive turn-on TNT sensors. Chem. Commun. 49, 6045–6047 (2013).CrossRefGoogle Scholar
  68. 68.
    Park, J. & Hammond, P. T. Multilayer Transfer Printing for Polyelectrolyte Multilayer Patterning: Direct Transfer of Layer-by-Layer Assembled Micropatterned Thin Films. Adv. Mater. 16, 520–525 (2004).CrossRefGoogle Scholar
  69. 69.
    Prum, R. O. & Torres, R. H. Structural colouration of mammalian skin:convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 207, 2157–2172 (2004).PubMedCrossRefGoogle Scholar
  70. 70.
    Oh, J. W. et al. Biomimetic virus-based colorimetric sensors. Nat. Commun. 5, 3043 (2014).PubMedGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jong-Sik Moon
    • 1
  • Chuntae Kim
    • 2
  • Won-Geun Kim
    • 2
  • Jiye Han
    • 2
  • Jong-Ryeul Sohn
    • 3
  • Jin-Woo Oh
    • 1
    • 2
    • 4
  1. 1.BK21 Plus Division of Nano Convergence TechnologyPusan National UniversityBusanKorea
  2. 2.Department of Nano Fusion TechnologyPusan National UniversityBusanKorea
  3. 3.BK21 PLUS Program in Embodiment: Health-Society Interaction, Department of Public Health SciencesGraduate School, Korea UniversitySeoulKorea
  4. 4.Department of Nanoenergy EngineeringPusan National UniversityBusanKorea

Personalised recommendations