Effects of long-term diazinon exposure on some immunological and haematological parameters in rainbow trout Oncorhynchus mykiss (Walbaum, 1792)

  • Kamal Ahmadi
  • Ali Reza Mirvaghefei
  • Mahdi Banaee
  • Abdol Rahim Vosoghei


Metagenome analysis was used to monitor changes in microbial population during the industrial-scale batch fermentation period (0, 15 days and 2 years). Genomic DNA was extracted from Bachu-Kimchi samples and was sequenced using GS Junior Titanium system, which yielded a total 6886, 6271, and 6621 reads from 0, 15 days and 2 years samples, respectively. Phylogenetic analysis based on 16S rRNA sequences showed clearly that microbial population was changed depending on the fermentation process (initial, rancid, and over-ripening stage). Wessella sp. and Leuconostoc sp. became the predominant group in microbial community at the optimumrancid stage (15 days), but as the fermentation progressed more, the abundance of Lactobacillus sp. and Bacillus sp. increased (2 years). Moreover, the specific kimchi microbes in the industrial-scale fermentation process were isolated: Leuconostoc mesenteroides, Lactobacillus sakei, Lactobacillus plantarum, and Weissella koreensis.


Diazinon Immunological parameters Hematological parameters Rainbow trout 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banaee, M., Mirvagefei, A. R., Rafei, G. R. & Majazi Amiri, B. Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. International Journal of Environmental Research 2, 189–198 (2008).Google Scholar
  2. 2.
    Banaee, M., Sureda, A., Mirvaghefi, A. R. & Ahmadi, K. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology 99, 1–6 (2011).CrossRefGoogle Scholar
  3. 3.
    Werimo, K., Bergwerff, A. A. & Seinen, W. Residue levels of organochlorines and organophosphates in water, fish and sediments from Lake Victoria-Kenyan portion. Aquatic Ecosystem Health & Management 12, 337–341 (2009).CrossRefGoogle Scholar
  4. 4.
    Arjmandi, R., Tavakol, M. & Shayeghi, M. Determination of organophosphorus insecticide residues in the rice paddies. International Journal Environmental Science Technology 7, 175–182 (2010).CrossRefGoogle Scholar
  5. 5.
    Ding, Y., Weston, D. P., Youl, J., Rothert, A. K. & Lydy, M. J. Toxicity of Sediment-Associated Pesticides to Chironomus dilutes and Hyalella Azteca. Archive of Environmental Contamination and Toxicology 61, 83–92 (2011).CrossRefGoogle Scholar
  6. 6.
    Hope, B. K. Using Legacy Data to Relate Biological Condition to Cumulative Aquatic Toxicity in the Willamette River Basin (Oregon, USA). Archive of Environmental Contamination and Toxicology 62, 424–437 (2012).CrossRefGoogle Scholar
  7. 7.
    U.S. EPA. Aquatic life ambient water quality criteria Diazinon Final. Office of Science and Thechnology Whashington, DC. (CAS Registry Number 333-41-5), 1–85 (2005).Google Scholar
  8. 8.
    Vryzas, Z., Vassiliou, G., Alexoudis, C. & Papadopoulou-Mourkidou E. Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Research 43, 1–10 (2009).PubMedCrossRefGoogle Scholar
  9. 9.
    Banaee, M., Sureda, A., Mirvagefei, A. R. & Ahmadi, K. Biochemical and histological changes in the liver tissue of Rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon. Fish Physiology and Biochemistry 39, 489–501 (2013).PubMedCrossRefGoogle Scholar
  10. 10.
    Banaee, M., Sureda, A., Mirvagefei, A. R. & Ahmadi, K. Histopathological alterations induced by diazinon in rainbow trout, (Oncorhynchus mykiss). International Journal of Environmental Research 7, 735–744 (2013).Google Scholar
  11. 11.
    Khoshbavar-Rostami, H. A., Soltani, M. & Hassan, H. M. D. Immune response of great sturgeon (Huso huso) subjected to long-term exposure to sub-lethal concentration of the organophosphate, diazinon. Aquaculture 256, 88–94 (2006).CrossRefGoogle Scholar
  12. 12.
    Nayak, A. S., Lage, C. R. & Kim, C. H. Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicological Sciences 98, 118–124 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    Werner, I. & Oram, J. Sacramento (CA): Delta Regional Ecosystem Restoration Implementation Plan. Pyrethroid Insecticides Ecosystem Conceptual Model. 1–43 (2008).Google Scholar
  14. 14.
    Eder, K. J., Leutenegger, C. M., Köhler, H. R. & Werner, I. Effects of neurotoxic insecticides on heat-shock proteins and cytokine transcription in Chinook salmon (Oncorhynchus tshawytscha). Ecotoxicology and Environmental Safety 72, 182–190 (2009).PubMedCrossRefGoogle Scholar
  15. 15.
    Cuesta, A., Meseguer, J. & Esteban, M. Á. Effects of the organochlorines p, p′-DDE and lindane on gilthead seabream leucocyte immune parameters and gene expression. Fish & Shellfish Immunology 25, 682–688 (2008).CrossRefGoogle Scholar
  16. 16.
    Girón-Pérez, M. I. et al. Immunologic parameters evaluations in Nile tilapia (Oreochromis niloticus) exposed to sublethal concentrations of diazinon. Fish & Shellfish Immunology 27, 383–385 (2009).CrossRefGoogle Scholar
  17. 17.
    Shelley, L. K., Balfry, S. K., Ross, P. S. & Kennedy, C. J. Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 92, 95–103 (2009).PubMedCrossRefGoogle Scholar
  18. 18.
    Jin, Y. X., Chen, R. J., Liu, W. P. & Fu, Z. W. Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio Rerio). Fish & Shellfish Immunology 28, 854–861 (2010).CrossRefGoogle Scholar
  19. 19.
    Wang, X., Xing, H., Li, X., Xu, S. & Wang, X. Effects of atrazine and chlorpyrifos on the mRNA levels of IL-1 and IFN-2b in immune organs of common carp. Fish & Shellfish Immunology 31, 126–133 (2011).CrossRefGoogle Scholar
  20. 20.
    Zelikoff, J. T. et al. Biomarkers of immunotoxicity in fish: from the lab to the ocean. Toxicology Letters 112–113, 325–331 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    Clifford, M. A., Eder, K. J., Werner, I. & Hedrick, R. P. Synergistic effects of esfenvalerate and infectious hematopoietic necrosis virus on juvenile Chinook salmon mortality. Environmental Toxicology and Chemistry 24, 1766–1772 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    Banaee, M. in Insecticides — Basic and Other Applications Book (eds Sonia Soloneski, Marcelo Larramendy) 101–126 (InTech, 2012).Google Scholar
  23. 23.
    Harford, A. J., O’Halloran, K. & Wright, P. F. A. The effects of in vitro pesticide exposures on the phagocytic function of four native Australian freshwater fish. Aquatic Toxicology 75, 330–342 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    Da Cuña, R. H. et al. Assessment of the acute toxicity of the organochlorine pesticide endosulfan in Cichlasoma dimerus (Teleostei, Perciformes). Ecotoxicology and Environmental Safety 74, 1065–1073 (2011).PubMedCrossRefGoogle Scholar
  25. 25.
    Shelley, L. K., Ross, P. S. & Kennedy, C. J. Immunotoxic and cytotoxic effects of atrazine, permethrin and piperonyl butoxide to rainbow trout following in vitro exposure. Fish & Shellfish Immunology 33, 455–458 (2012).CrossRefGoogle Scholar
  26. 26.
    Kim, S., Carrillo, M., Radhakrishnan, U. P. & Jagadeeswaran, P. Role of zebrafish thrombocyte and nonthrombocyte microparticles in hemostasis. Blood Cells, Molecules, and Diseases 48, 188–196 (2012).PubMedCrossRefGoogle Scholar
  27. 27.
    Nussey, G., Van Vuren, J. H. J., Du Preez, H. H. Effect of copper on blood coagulation of Oreochromis mossambicus (Cichlidae). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 111, 359–367 (1995).Google Scholar
  28. 28.
    Ahmadi, K., Banaee, M., Vosoghei, A. R., Mirvaghefei, A. R. & Ataeimehr, B. Evaluation of the immunomodulatory effects of silymarin extract (Silybum marianum) on some immune parameters of rainbow trout, Oncorhynchus mykiss (Actinopterygii: Salmoniformes: Salmonidae). Acta Ichthyol. Piscat. 42, 113–120 (2012).CrossRefGoogle Scholar
  29. 29.
    Rooijakkers, S. H. M. & van Strijp, J. A. G. Bacterial complement evasion. Molecular Immunology 44, 23–32 (2007).PubMedCrossRefGoogle Scholar
  30. 30.
    Wu, S. M., Shih, M. J. & Ho, Y. C. Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 145, 218–226 (2007).Google Scholar
  31. 31.
    Bado-Nilles, A., Quentel, C., Thomas-Guyon, H. & Le Floch, S. Effects of two oils and 16 pure polycyclic aromatic hydrocarbons on plasmatic immune parameters in the European sea bass, Dicentrarchus labrax (Linné). Toxicology in Vitro 23, 235–241 (2009).PubMedCrossRefGoogle Scholar
  32. 32.
    Prabakaran, M., Binuramesh, C., Steinhagen, D. & Michael, R. D. Immune response in the tilapia, Oreochromis mossambicus on exposure to tannery effluent. Ecotoxicology and Environmental Safety 68, 372–378 (2007).PubMedCrossRefGoogle Scholar
  33. 33.
    Girón-Pérez, M. I. et al. Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish & Shellfish Immunology 23, 760–769 (2007).CrossRefGoogle Scholar
  34. 34.
    Siwicki, A. K. et al. Influence of deltamethrin on nonspecific cellular and humoral defense mechanisms in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 29, 489–491 (2010).PubMedCrossRefGoogle Scholar
  35. 35.
    Velisek, J., Svobodova, Z. & Machova, J. Effects of bifenthrin on some haematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.). Fish Physiology and Biochemistry 35, 583–590 (2008).PubMedCrossRefGoogle Scholar
  36. 36.
    Banaee, M. in Insecticides often Undesired but still so Important (eds Stanislav Trdan) 103–142 (InTech, 2013).Google Scholar
  37. 37.
    O’Brien, P. J. Peroxidase. Chemico-Biological Interactions 129, 113–139 (2000).PubMedCrossRefGoogle Scholar
  38. 38.
    Awad, E. S. in School of Life Sciences (Heriot Watt University press, Edinburgh, UK, 2010).Google Scholar
  39. 39.
    Sarder, M. R. I., Thompson, K. D., Penman, D. J. & McAndrew, B. J. Immune response of Nile tilapia (Oreochromis niloticus L.) clones: I. Non-specific responses. Developmental and Comparative Immunology 25, 37–46 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    Azizoğlu, A. & Cengízler, I. An investigation on determination of some haematologic parameters in healthy Oreochromis niloticus (L.). Turkish Journal of Veterinary and Animal Sciences 20, 425–431 (1996).Google Scholar
  41. 41.
    Yano, T. in Techniques in fish immunology (eds Stolen, J. S., Fletcher, T. C., Anderson, D. P., Hattari, S. C.) 131–141 (SOS Publications, Fair Haven, NJ, USA, 1992).Google Scholar
  42. 42.
    Lange, S., Gumundsdottir, B. K. & Mangadottir, B. Humoral immune parameters of cultured Atlantic halibut (Hippoglossus hippoglossus L.). Fish & Shellfish Immunology 11, 523–535 (2001).CrossRefGoogle Scholar
  43. 43.
    Cuesta, A. et al. Effect of sex-steroid hormones, testosterone and estradiol, on humoral immune parameters of gilthead seabream. Fish & Shellfish Immunology 23, 693–700 (2007).CrossRefGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kamal Ahmadi
    • 1
  • Ali Reza Mirvaghefei
    • 2
  • Mahdi Banaee
    • 3
  • Abdol Rahim Vosoghei
    • 4
  1. 1.Young Researchers Club, Tehran North BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Fishery, Natural Resource FacultyUniversity of TehranKarajIran
  3. 3.Department of Aquaculture, Natural Resource and Environment FacultyBehbahan Khatam Alanbia University of TechnologyBehbahanIran
  4. 4.Tehran North BranchIslamic Azad UniversityTehranIran

Personalised recommendations